Table of Quotient Curves of Modular Curves $X_0(N)$ with Genus 2

By Yuii HASEGAWA

Department of Mathematics, Waseda University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1995)

1. Introduction. Let $X_0(N)$ be the modular curve corresponding to the modular group $\Gamma_0(N)$. All hyperelliptic curves $X_0(N)$ have been determined by Ogg [8], and their defining equations are given in [10]. Let W(N) be the subgroup of $\operatorname{Aut} X_0(N)$ generated by all Atkin-Lehner's involutions ([1]), and let W'(N) be a subgroup of W(N). Then, by [2], we see that there are 138 cases in the range $N \leq 300$ such that the quotient curve $X' = X_0(N)/W'(N)$ is of genus two. For $N \geq 301$, we can find that there are only four such cases, see [4]. In this article, we shall give the table of defining equations of such X''s. We use the following

Theorem. Let $S_2(N)$ be the space of cuspforms of weight two on $\Gamma_0(N)$ and $S_2(N)^{W'(N)}$ be the fixed part of $S_2(N)$ by W'(N). Assume that X'= $X_0(N)/W'(N)$ is of genus two, and $S_2(N)^{W'(N)}$ is spanned by

$$f_1 = \sum_{n \ge 1} a_n q^n, f_2 = \sum_{n \ge 2} b_n q^n$$

with a_n , $b_n \in \mathbb{Z}$, $a_1b_2 \neq 0$. Put $z = f_1/f_2$ and $w = (f_2/q)^{-1}(dz/dq)$. Then z and w generate the function field $\mathbb{Q}(X')$ of X' over \mathbb{Q} and give the defining equation $w^2 = f(z)$ of X'.

Proof. See [7].

 f_1 and f_2 are computed by using Brandt matrices and trace formulas of Hecke operators ([5], [9]).

2. Results. The following is the list of $X_0(N)/W'(N)$ with genus equal to 2. The fourth column gives f(z) in the theorem. The sixth column gives the dimension of the subspace of $S_2(N)^{W'(N)}$ spanned by newforms, and the seventh column gives the field of Hecke eigenvalues if $S_2(N)^{W'(N)}$ is Q-simple and spanned by newforms.

N	$p \mid N$	W'(N)	f(z)	$\operatorname{disc}(f)$		
22	2,11	1	$(z^3 + 2z^2 - 4z + 8)(z^3 - 2z^2 + 4z - 4)$	$-2^{24}11^4$	0	
23	23	1	$(z^3-z+1)(z^3-8z^2+3z-7)$	$-2^{12}23^6$	2	$Q(\sqrt{5})$
26	2,13	1	$z^6 - 8z^5 + 8z^4 - 18z^3 + 8z^2 - 8z + 1$	$-2^{20}13^3$	2	
28	2,7	1	$(z^2+7)(z^2-z+2)(z^2+z+2)$	$2^{28}7^3$	0	
29	29	1	$z^6 - 4z^5 - 12z^4 + 2z^3 + 8z^2 + 8z - 7$	$-2^{12}29^{5}$	2	$Q(\sqrt{2})$
30	2,3,5	$\langle W_2 \rangle$	$(z^2-z+1)(z^2+3z+1)(z^2-6z+1)$	$2^{13}3^{9}5^{5}$	1	
		$\langle W_3 \rangle$	$z(z+3)(z^2-z+4)(z^2-2z+5)$	$-2^{24}3^35^5$	0	
		$\langle W_{10} \rangle$	$(z^2-z-1)(z^2+2z-7)(z^2+3z-9)$	$-2^{13}3^{6}5^{2}$	1	
31	31	1	$(z^3 - 2z^2 - z + 3)(z^3 - 6z^2 - 5z - 1)$	$-2^{12}31^4$	2	$Q(\sqrt{5})$
33	3,11	$\langle W_3 \rangle$	$(z-1)(z^2-4z-8)(z^3+z^2+3z-1)$	$2^{12}3 \cdot 11^{9}$	1	
35	5,7	$\langle W_7 \rangle$	$(z+1)(z^2+4)(z^3-5z^2+3z-19)$	$-2^{12}5^{7}7^{3}$	2	$Q(\sqrt{17})$
37	37	1	$z^6 + 8z^5 - 20z^4 + 28z^3 - 24z^2 + 12z - 4$	$-2^{12}37^3$	2	
38	2,19	$\langle W_2 \rangle$	$(z^3 - 5z^2 - 4)(z^3 + z^2 - z + 3)$	$-2^{15}19^6$	1	
39	3,13	$\langle W_{13} \rangle$	$(z-1)(z+3)(z^2-5z+3)(z^2+3z-1)$	$-2^{12}3^{10}13^2$	2	$Q(\sqrt{2})$
40	2,5	$\langle W_8 \rangle$	$(z^2+4z-4)(z^4+4z^2-8z+4)$	$-2^{25}5^{5}$	1	
		$\langle W_{\scriptscriptstyle 5} \rangle$	$(z^2+4)(z^4+12z^2+16)$	$2^{36}5^2$	0	
42	2,3,7	$\langle W_3 \rangle$	$(z^2 - 5z + 1)(z^4 + z^3 + 4z^2 + z + 1)$	$-2^{25}3\cdot7^3$	1	
		$\langle W_6 \rangle$	$(z^2+z-5)(z^4-z^3-2z^2-5z+11)$	$-2^{15}3\cdot7^3$	0	
		$\langle W_{21} \rangle$	$(z^2+z+1)(z^4+7z^3+16z^2+7z+1)$	$2^{19}3 \cdot 7^2$	1	
		$\langle W_{42} angle$	$(z^2 - 5z + 7)(z^4 - 7z^3 + 22z^2 - 35z + 23)$	$2^{13}3 \cdot 7^2$	0	