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Abstract:

In this paper we shall prove two theorems: Firstly, a minimal flow is regular-

ly almost periodic if and only il it is almost automorphic and the dimension of the set of
eigenvalues is 1. Secondly, a minimal flow is pointwise regularly almost periodic if and only
if it is equicontinuous and the dimension of the set of eigenvalues is 1.

§1. Introduction. Let X be a metric space
with metric dy. Z, @, R and C denote the set of
integers, rational numbers, real numbers and
complex numbers, respectively. A continuous
mapping 7 : X X R— X is said to be a flow on (a
phase space) X il 7 satislies the [ollowing condi-
tions:

(1) n(r,0) =xlorxeX.

(2) n(r(x, 1), s) = n(x, t+ s)
forxeXand t, seR.

For A € X and B C R, we denote the set {m(x,
t);xeA, te B} by (A, B). The closure of A C
X is denoted by A. For xe X we denote the orbit
through xe X by 0,(X), that is, O0,(x) = n(x,
R). M C X is called an invarianl sel of m if
0,(x) © M for each x& M. The restriction of 7
to an invariant set M of 7 is denoted by 7| M. A
non-empty compact invariant set M < X is said
to be a minimal sel of w if we have O,(x) = M
for each xe M. If X is itsell a minimal set of T,
we say that 7 is a minimal flow on X. 7 is said
to be equicontinuous if for each ¢ > 0 there exists
a 0 > 0 such that dy(z(x, t), n(y, ) <e for
dy(x, y) < dand teR.

Let 7w be a minimal flow on a compact metric
space X.xeX is called a regularly almost
periodic point if for each & > 0 there exists an
a >0 such that w(x, na)e U/ (x) for neZ,
where U, (x) = {ze X ;dy(x, 2) < ¢€}. The set
of regularly almost periodic points is denoted by
R(m). If R(xw) * ¢, we say that m is regularly
almost periodic. If R(x) = X, we say that 7 is
pointwise regularly almost periodic. x € X is said to
be an almost automorphic point if w(x, 7,) — y as
n— oo for some sequence {r,} C R implies that
n(y, — t,) = x as n— % . The set of almost
automorphic points is denoted by A(w). If

A(r) = ¢, we say that m is almosl aulomorphic.
We can easily see that R(x) and A(w) are in-
variant sets of . A ¢ R is said to be an eigenva-
lue of m if there exists a continuous mapping X, :
X—K=1{€ecC;|&| =1} such that yx,(n(x,
D) = x,(@)exp(dh) for xeX and te R. In this
case, X; is called an eigenfunclion belonging lo A.
The set of eigenvalues of m is denoted by A(m).
We can easily verify that A(xw) is a countable
subgroup of the additive group R.

Oy Ogy oo e e e , @, ¢ R are said to be
ralionally independent il o, + v, + ..o ...
+ r,a, = 07, Q) impliesr, =7,= .........
= 7, = 0. We say that a countable subset A of R

has dimension n if there exist a;, &, ......... ,
a, € R, which are rationally independent, such
that we have a=na, +7ra, + ... ...... +

r,a,(r; € Q) for each aeA. The dimension of
A C R is denoted by dim A.

In [4] regularly almost periodic minimal
flows are discussed for discrete phase group. In
this paper we characterize them for one para-
meter flows. In section 2 we shall show the fol-
lowing theorems.

Theorem 1. Let m be a minimal flow on a
compact metric space X. Then 1 is regularly almost
periodic if and only if it is almost automorphic and
dim A(n) = 1.

Theorem 2. Let w be a minimal flow on a
compact metric space X. Then T is pointwise reg-
ularly almost periodic if and only if il is equiconti-
nuous and dim A(x) = 1.

§2. Proofs of Theorems. In this section we
shall prove Theorems 1 and 2. In order to prove
them, we need several propositions.

Let m and o be flows on compact metric
spaces X and Y, respectively. A continuous map-



