A Characterization of Regularly Almost Periodic Minimal Flows

By Jirō EGAWA

Division of Mathematics and Informatics, Faculty of Human Development, Kobe University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 12, 1995)

Abstract: In this paper we shall prove two theorems: Firstly, a minimal flow is regularly almost periodic if and only if it is almost automorphic and the dimension of the set of eigenvalues is 1. Secondly, a minimal flow is pointwise regularly almost periodic if and only if it is equicontinuous and the dimension of the set of eigenvalues is 1.

§1. Introduction. Let X be a metric space with metric d_X . Z, Q, R and C denote the set of integers, rational numbers, real numbers and complex numbers, respectively. A continuous mapping $\pi: X \times R \to X$ is said to be a *flow on* (a *phase space*) X if π satisfies the following conditions:

(1) $\pi(x, 0) = x \text{ for } x \in X.$

(2) $\pi(\pi(x, t), s) = \pi(x, t+s)$

for $x \in X$ and t, $s \in R$.

For $A \subseteq X$ and $B \subseteq R$, we denote the set $\{\pi(x, t) ; x \in A, t \in B\}$ by $\pi(A, B)$. The closure of $A \subseteq X$ is denoted by \overline{A} . For $x \in X$ we denote the orbit through $x \in X$ by $O_{\pi}(X)$, that is, $O_{\pi}(x) = \pi(x, R)$. $M \subseteq X$ is called an invariant set of π if $O_{\pi}(x) \subseteq M$ for each $x \in M$. The restriction of π to an invariant set M of π is denoted by $\pi \mid M$. A non-empty compact invariant set $M \subseteq X$ is said to be a minimal set of π if we have $\overline{O_{\pi}(x)} = M$ for each $x \in M$. If X is itself a minimal set of π , we say that π is a minimal flow on X. π is said to be equicontinuous if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $d_X(\pi(x, t), \pi(y, t)) < \varepsilon$ for $d_X(x, y) < \delta$ and $t \in R$.

Let π be a minimal flow on a compact metric space $X. x \in X$ is called a regularly almost periodic point if for each $\varepsilon > 0$ there exists an $\alpha > 0$ such that $\pi(x, n\alpha) \in U_{\varepsilon}(x)$ for $n \in Z$, where $U_{\varepsilon}(x) = \{z \in X; d_x(x, z) < \varepsilon\}$. The set of regularly almost periodic points is denoted by $R(\pi)$. If $R(\pi) \neq \phi$, we say that π is regularly almost periodic. If $R(\pi) = X$, we say that π is pointwise regularly almost periodic. $x \in X$ is said to be an almost automorphic point if $\pi(x, \tau_n) \rightarrow y$ as $n \rightarrow \infty$ for some sequence $\{\tau_n\} \subset R$ implies that $\pi(y, -\tau_n) \rightarrow x$ as $n \rightarrow \infty$. The set of almost automorphic points is denoted by $A(\pi)$. If $A(\pi) \neq \phi$, we say that π is almost automorphic. We can easily see that $R(\pi)$ and $A(\pi)$ are invariant sets of π . $\lambda \in R$ is said to be an eigenvalue of π if there exists a continuous mapping χ_{λ} : $X \rightarrow K = \{\xi \in C ; |\xi| = 1\}$ such that $\chi_{\lambda}(\pi(x, t)) = \chi_{\lambda}(x)\exp(i\lambda t)$ for $x \in X$ and $t \in R$. In this case, χ_{λ} is called an eigenfunction belonging to λ . The set of eigenvalues of π is denoted by $\Lambda(\pi)$. We can easily verify that $\Lambda(\pi)$ is a countable subgroup of the additive group R.

 $\alpha_1, \alpha_2, \ldots, \alpha_n \in R$ are said to be rationally independent if $r_1\alpha_1 + r_2\alpha_2 + \ldots + r_n\alpha_n = 0$ ($r_i \in Q$) implies $r_1 = r_2 = \ldots = r_n = 0$. We say that a countable subset A of Rhas dimension n if there exist $\alpha_1, \alpha_2, \ldots, \ldots, \alpha_n \in R$, which are rationally independent, such that we have $a = r_1\alpha_1 + r_2\alpha_2 + \ldots + r_n\alpha_n(r_i \in Q)$ for each $a \in A$. The dimension of $A \subset R$ is denoted by dim A.

In [4] regularly almost periodic minimal flows are discussed for discrete phase group. In this paper we characterize them for one parameter flows. In section 2 we shall show the following theorems.

Theorem 1. Let π be a minimal flow on a compact metric space X. Then π is regularly almost periodic if and only if it is almost automorphic and dim $\Lambda(\pi) = 1$.

Theorem 2. Let π be a minimal flow on a compact metric space X. Then π is pointwise regularly almost periodic if and only if it is equicontinuous and dim $\Lambda(\pi) = 1$.

§2. Proofs of Theorems. In this section we shall prove Theorems 1 and 2. In order to prove them, we need several propositions.

Let π and ρ be flows on compact metric spaces X and Y, respectively. A continuous map-