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Small Stable Stationary Solutions in Morrey Spaces of
the Navier-Stokes Equation
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(Communicated by Kiyosi ITO, M. J. A., Nov. 13, 1995)

Recently, many authors studied the Cauchy
problem for the Navier-Stokes equation in R” in
the framework of Morrey spaces. For example,
Giga and Miyakawa [2] and Kato [3] gave suffi-
cient conditions for the unique existence of
time-global solutions. For previous papers re-
lated to this problem, see the references of Kozo-
no and Yamazaki [4], which studied the above
Cauchy problem in new function spaces larger
than the corresponding Morrey spaces. However,
these papers considered only the case where the
external force vanishes identically or decays as
t— oo,

The purpose of this paper is to generalize
the results on the global solvability in the works
above to the case with a stationary external force
by showing the unique existence and the stability
of a small stationary solution in suitable Morrey
spaces under appropriate assumptions on the ex-
ternal force.

More precisely, we consider the following
stationary Navier-Stokes equation with an exter-
nal force f(x) in R” for n = 3:

(1) —A4,w(x) + (wx) « V) w(x)
+ V(o) = fo),
(2) vV, w) =0,

and find a sufficient condition on f(x) for the un-
ique existence of a small solution of (1)-(2) in
suitable Morrey spaces.

We also verify the stability of the above sta-
tionary solution by showing the time-global uni-
que solvability and giving a bound of the solution
of the following nonstationary Navier-Stokes
equation in (0, %) X R;l with the same external
force as above:

(3) %(t,x) — A0¢, 0+ i, 2 - V)ult, x)
+V.q(t, v = flo),
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(4) V. -v(t,x) =0,

(5) v(0, x) = a(x) on Ry,

for the Cauchy data a(x) close enough to the sta-
tionary solution.

Furthermore, we can take initial values in
suitable function spaces introduced by [4]. These
spaces are strictly larger than the corresponding
Morrey spaces, and contain distributions other
than Radon measures.

We start with the definition of the function
spaces. Let p, ¢ and s be real numbers such that
1 < g < p, and suppose that » € [1, o]. Then
the Morrey space M,, on R" is defined to be the
set of functions #(x) € LI . (R") such that

lu|,,|= sup supR™*™""*
roeR" R>0

([ Jueo ) "< .

We next define the space J(, , by the formula
My, = {ulx) € S/P|| ul;,|
= (=4 ul M, || < o},

where 4" and % denote the set of tempered dis-
tributions on R” and the set of polynomials with
n variables respectively.

Furthermore, we define the space N, ,, after
[4] as the set of #(x) € &' /P such that

Ll &5, 1= 12" | 77 Lo @) FLul]

| My D1 €7 ] < o0,

where {(p(Z_jS)}:l_.>° is a homogeneous Littlewood-
Paley partition of unity. (See Bergh and Lofstrom
[1] for example.)

Then it is shown in [4] that N} ,, C JM,, C
N} .40 and that the spaces M,, and N},, can be
canonically regarded as a subspace of B’ if
s<un/p.

Now we can state our main results.

Theorem A. Suppose that r satisfies 2 < »
< n. Then there exist a positive number 0, and a
continuous, strictly monotone-increasing function
w(0) on [0, d,] satisfving w(0) = O such that the
following hold -

(1) For every f(x) € ()", there exists at



