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Spined products of semigroups were first defined and studied by N.
Kimura, 1958, [7]. After that, spined products have been considered many a
time, predominantly those of a band and a semilattice of semigroups with re-
spect to their common semilattice homomorphic image. Spined and subdirect
products of a band and a semilattice of groups are studied by M. Yamada
[13], [14], J. M. Howie and G. Lallement [6] and by M. Petrich [10]; spined
products of a band and some types of semilattices of monoids are studied by
F. Pastijn [8], A. E1-Qallali [3], [4], and by R. ]J. Warne [12]. For other consid-
erations of these products, we refer to [4], [5], [7], [9], [15]. In the quoted pap-
ers, spined products are considered in connection with some types of bands
of semigroups. In this paper, we give a general composition for bands of
semigroups that are (punched) spined products of a band and a semilattice of
semigroups. This composition, in some sense, is a generalization of a
well-known semilattice composition (see Theorem III 7.2. [9]).

Let B be a band. By <, and <, we denote quasi-orders on B defined
by i<,jo i =74,i<,j<ji=7j and by < we denote the natural order on
B defined by “i < j means that { <, and { <,j”. For { € B, we will denote
by [z] the class of an element ¢ in the greatest semilattice decomposition of a
band B (so [7] is an element of the greatest semilattice homomorphic image
of B). If S is a band B of semigroups S;, ¢ € B, then for k € B, F, will de-
note the semigroup F, = U{S;|i € B, [i] = [k]}. If 6 is a homomorphism
of a semigroup S into a semigroup S’, and if T is a common subsemigroup of
S and S’, then 6 is a T-homomorphism if af = a, for all a € T. A subsemi-
group T of a semigroup S is a retract of S if there exists a homomorphism 8
of S onto T such that af = a, for all a € T. We call such a homomorphism
a retraction. If T is a subsemigroup of a semigroup S, then we say that S is
an oversemigroup of T. If p is a congruence on a semigroup S, then we denote
by o' the natural homomorphism of S onto S/p. If P and @ are two semi-
groups having a common homomorphic image Y, then the spined product of P
and Q with respect to Yis S= {(a, b) € P X Q|ap = by}, where ¢ : P—Y
and ¢ : @ — Y are homomorphisms onto Y. If Y is a semilattice and P and @
are a semilattice Y of semigroups P,, a € Y, and @,, a € Y, respectively,
then the spined product of P and @ with respectto Yis S = U,y P, X @,.
A subsemigroup S of a spined product of semigroups P and @ with respect
to Y, that is also a subdirect product of P and @, is a punched spined product
of P and @ with respect to Y.
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