9. A Note on Jacobi Sums

By Masanari KIDA and Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1993)

Introduction. Let p be an odd prime, F_p be the finite field with pelements and χ be a character of order l of the multiplicative group F_{b}^{\times} . Consider a Jacobi sum

$$J = \sum_{x \in F_p} \chi(x) \chi(1-x), \quad \chi(0) = 0.$$

Obviously J is an integer in the lth cyclotomic field k_l . By machine computation, the older author observed that $Q(J) = k_l$ for small p and l. In this paper, we shall prove a theorem which explains (more than enough) the observation.

§1. The group $G(\mathfrak{p})$. For a positive integer *m*, let ζ_m be a primitive *mth* root of 1, $k_m = Q(\zeta_m)$ and $\mathfrak{o}_m = \mathbb{Z}[\zeta_m]$. For a prime ideal \mathfrak{p} of \mathfrak{o}_m such that $\mathfrak{p} \not\prec m$, let $\chi_{\mathfrak{p}}(x) = (x/\mathfrak{p})_m$, the *m*th power residue symbol, $x \in \mathfrak{o}_m$, $\mathfrak{p} \not\prec$ x, i.e., $\chi_{p}(x \mod p)$ is the unique *m*th root of 1 such that

 $\chi_{\mathfrak{p}}(x \mod \mathfrak{p}) \equiv x^{\frac{q-1}{m}}, \pmod{\mathfrak{p}},$ (1)

where $q = p' = N\mathfrak{p}$ is the cardinality of $\mathfrak{o}_m/\mathfrak{p}$. One sees that $\chi_{\mathfrak{p}}$ is a character of $(\mathfrak{o}_m/\mathfrak{p})^{\times}$ of order *m*. We put $\chi_{\mathfrak{p}}(0) = 0$. As a nontrivial additive character of $\mathfrak{o}_m/\mathfrak{p} = F_q$, we adopt the function $\psi_\mathfrak{p}(x) = \zeta_p T(x)$, where T is the trace map from F_q to F_p .

Consider the Gauss sum

(2)
$$g(\mathfrak{p}) = \sum_{x \in \mathfrak{o}_m/\mathfrak{p}} \chi_{\mathfrak{p}}(x) \psi_{\mathfrak{p}}(x) \in \mathfrak{o}_{mp}.$$

Note that $k_{mp} = k_m k_p$, $k_m \cap k_p = Q$; hence we can identify two Galois groups $G(k_m/Q)$ and $G(k_{mp}/k_p)$. For an integer t with (t, m) = 1, we denote by σ_t the element of $G(k_m/Q) = G(k_{mp}/k_p)$ such that $\zeta_m^{\sigma_t} = \zeta_m^t$. We denote by μ_n the group of *n*th roots of 1. For a number field K, we denote by $\mu(K)$ group of roots of 1 in K. For the cyclotomic field $k_m = Q(\mu_m)$, we know that $\mu(k_m) = \mu_m$ or μ_{2m} according as m is even or odd.

Consider the group

(3)
$$G(\mathfrak{p}) = \{\sigma_t \in G(k_m/Q) ; g(\mathfrak{p})^{1-\sigma_t} \in \mu(k_m)\}.$$

For $u \in F_p$, put
(4) $A_u = \sum_{T(x)=u} \chi_p(x).$

One sees easily that

 $A_u = \chi_{\mathfrak{p}}(u)A_1, \quad \text{for } u \neq 0.$ (5)From (2), (4), (5), we have (6) $g(\mathfrak{p}) = \sum_{u \in F_{p}} A_{u} \zeta_{p}^{u} = A_{0} + A_{1} \sum_{u \neq 0} \chi_{\mathfrak{p}}(u) \zeta_{p}^{u}.$ Since $1 = -\sum_{u \neq 0} \zeta_{p}^{u}$, (6) implies that