66. An Example of Elliptic Curve over Q with Rank ≥ 20

By Koh-ichi NAGAO

Shiga Polytechnic College^{*)} (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

Abstract: We construct an elliptic curve over Q with rank ≥ 20 .

Mestre [1] (resp. [2]) constructed elliptic curves over Q(T) with Q(T)-rank ≥ 11 (resp. with Q(T)-rank ≥ 12). In the families of elliptic curves over Q, which are obtained by specialization of above curves, Mestre [3] found an elliptic curve over Q with Q-rank ≥ 15 . In choosing appropriate elliptic curves in these families, author [4] (resp. Tunnel (cf. [5]), resp. Fermiger [5]) found two elliptic curves with Q-rank ≥ 17 (resp. one curve with Q-rank ≥ 18 , resp. two curves with Q-rank ≥ 19). In this paper, we show by the same method but using a computational device mentioned later that there is an elliptic curve over Q with Q-rank ≥ 20 .

§1. Mestre's construction of elliptic curve over Q(T) with Q(T)-rank \geq 11. Let $\alpha_i \in Z$ (i = 1, 2, 3, 4, 5, 6), and put $q(X) = \prod_{i=1}^{6} (X - \alpha_i)$, $p(X) = q(X - T) * q(X + T) \in Q(T)[X]$. Then there are g(x), $r(X) \in Q(T)[X]$ with deg g = 6, deg $r \leq 5$ such that $p = g^2 - r$. Then the curve $Y^2 = r(X)$ contains 12 Q(T)-rational points P_1, \ldots, P_{12} where

 $P_i = (T + \alpha_i, g(T + \alpha_i)), P_{i+6} = (-T + \alpha_i, g(-T + \alpha_i)), 1 \le i \le 6.$ Let c_5 be the coefficient of X^5 of r(X).

In case $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6) = (-17, -16, 10, 11, 14, 17)$, we have $c_5 = 0$ and on the elliptic curve $Y^2 = r(X), P_1, \ldots, P_{11}$ are independent Q(T)-rational points. (Group structure is given with P_{12} at origin.)

For any 6-ple of $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6) \in \mathbb{Z}^6$ with $c_5 = 0$, we obtain as above an elliptic curve $\varepsilon_A : Y^2 = r(X)$ over Q(T). For $t \in Q$, we denote with $E_t = E_{A,t}$ the elliptic curve over Q obtained from ε_A by specialization $T \to t$.

§2. Construction of our curve. For an elliptic curve E over Q, and a prime number p, we put $a_p = a_p(E) = p + 1 - \# E(F_p)$. For a fixed integer N, we put furthermore $S(N) = S(N, E) = \sum (-a_p + 2)/(p + 1 - a_p)$ and $S'(N) = S'(N, E) = (\sum -a_p * \log(p))/N$ where p runs over good primes satisfying $p \leq N$. It is experimentally known (cf. [6]) that high rank curves are found among curves with large S(N), S'(N).

Now let A = (95,71,66,58,13,0). Then we have $c_5 = 0$. We search in the family of curves

 $\{E_{t_1/t_2}(=E_{A,t_1/t_2}) \mid 1 \le t_1 \le 3000, 1 \le t_2 \le 300, t_1 t_2 \text{ are co-prime}\},\$ curves satisfying $S(401) \ge 31.5, S'(401) \ge 11, S(1987) \ge 61, S'(1987) \ge 16,$

¹ 1414 Hurukawa cho Oh-mihachiman shi 523, Japan.