58. Normal Band Compositions of Semigroups*)

By Miroslav CIRIĆ and Stojan BOGDANOVIĆ

University of Niš, Yugoslavia (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

Abstract: In this paper we give a construction of bands of arbitrary semigroups and we apply this result to study of normal bands of semigroups, and especially for normal bands of monoids. We generalize some well-known results concerning normal bands of monoids and groups.

In this paper we consider band compositions in the general case. Using a general construction for a semilattice of semigroups, we give a construction for a band of arbitrary semigroups. This construction is a very simple consequence of Theorem A, but we give some important applications of this construction: We give a description of normal bands of arbitrary semigroups, especially of normal bands of monoids, and as consequences we obtain some well-known results concerning normal bands of monoids and groups. Note that in our considerations, the conditions (5) and (6) in Theorem A have the important role.

Throughout this paper, $S = (B; S_i)$ means that a semigroup S is a band B of semigroups S_i , $i \in B$. Let $S = (B; S_i)$, where each S_i is a monoid with the identity e_i , S is a systematic band B of S_i , $i \in B$, if $ij = j \Rightarrow$ $e_i e_j = e_i$ and $ji = j \Rightarrow e_i e_i = e_i$ (M. Yamada [14]). S is a proper band of S_i if $\{e_i \mid i \in B\}$ is a subsemigroup of S (B.M. Schein [11]). Let S be an ideal of a semigroup D. A congruence σ on D is an S-congruence on D if its restriction on S is the equality relation on S. An ideal extension D of a semigroup S is a dense extension of S if the equality relation is the unique S-congruence on D.

Theorem A [9]. Let Y be a semilattice. For each $\alpha \in Y$ we associate a semigroup S_{α} and an extension D_{α} of S_{α} such that $D_{\alpha} \cap D_{\beta} = \emptyset$ if $\alpha \neq \beta$. For every pair α , $\beta \in Y$ such that $\alpha \geq \beta$ let $\phi_{\alpha,\beta}: S_{\alpha} \to D_{\beta}$ be a mapping satisfying:

- (1) $\phi_{\alpha,\alpha}$ is the identity mapping on S_{α} ;
- $(2) (S_{\alpha}\phi_{\alpha,\alpha\beta})(S_{\beta}\phi_{\beta,\alpha\beta}) \subseteq S_{\alpha\beta};$

(3) $[(a\phi_{\alpha,\alpha\beta})(b\phi_{\beta,\alpha\beta})]\phi_{\alpha\beta,\gamma} = (a\phi_{\alpha,\gamma})(b\phi_{\beta,\gamma}),$ for all α , β , $\gamma \in Y$ such that $\alpha\beta > \gamma$ and all $\alpha \in S_{\alpha}$, $\beta \in S_{\beta}$.

Define a multiplication * on $S = \bigcup_{\alpha \in Y} S_{\alpha}$ with:

(4)
$$a * b = (a\phi_{\alpha,\alpha\beta})(b\phi_{\beta,\alpha\beta}), \quad (a \in S_{\alpha}, b \in S_{\beta}).$$

Then S is a semilattice Y of semigroups S_{α} , in notation $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha})$. Conversely, every semigroup S which is a semilattice Y of semigroups S_{α} can be so constructed. In addition, D_{α} can be chosen to satisfy:

- (5) $D_{\alpha} = \{b\phi_{\beta,\alpha} \mid \beta \geq \alpha, b \in S_{\beta}, \beta \in Y\}$;
- (6) D_{α} is a dense extension of S_{α} .

Supported by Grant 0401A of RFNS through Math. Inst. SANU.