57. On a Conjecture on Pythagorean Numbers

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

L. Jeśmanowicz [1] conjectured that if u, v, w are Pythagorean numbers, i.e. positive integers with (u, v) = (v, w) = (w, u) = 1 satisfying $u^2 + v^2$ $= w^2$, then the diophantine equation on $l, m, n \in N$

$$u^l + v^m = w^n$$

has the only solution (l, m, n) = (2,2,2). (Cf. [2].) Since u, v, w are Pythagorean numbers, we have

$$u = x^2 - y^2$$
, $v = 2xy$, $w = x^2 + y^2$,

where $x, y \in \mathbb{N}$, with (x, y) = 1, x > y, $x \not\equiv y \pmod{2}$.

We shall consider here the following diophantine equation on $l, m, n \in N$ $(4a^2 - y^2)^l + (4ay)^m = (4a^2 + y^2)^n$

where $a, y \in N$ with $(a, y) = 1, 2a > y, y \equiv 3 \pmod{4}$, whence l is even, which is easily seen considering (1) mod 4.

Proposition 1. If a is odd, then $m \equiv n \pmod{2}$ and $m \neq 1 \Leftrightarrow n$ is even.

Proof. From (1) we have $(4ay)^m \equiv (2y^2)^n \pmod{4a^2 - y^2}$. By the assumptions on a, y,

$$\left(\frac{2^{2m}a^my^m}{4a^2-u^2}\right) = (-1)^m = \left(\frac{2^ny^{2n}}{4a^2-u^2}\right) = (-1)^n,$$

where $\left(\frac{*}{*}\right)$ is the Jacobi symbol. Hence $m \equiv n \pmod{2}$. If n is even, $m \neq 1$.

If *n* is odd, $(4a^2 + y^2)^n \equiv 5 \pmod{8}$ and $(4a^2 - y^2)^l \equiv 1 \pmod{8}$. Then we have $(4ay)^m \equiv 4 \pmod{8}$ from (1), hence m = 1.

Proposition 2. If a is even, then m is even.

Proof. From (1) we have $(4ay)^m \equiv (2y^2)^n \pmod{4a^2 - y^2}$. By the assumptions on a, y

$$\left(\frac{2^{2^m}a^my^m}{4a^2-u^2}\right) = (-1)^m = \left(\frac{2^ny^{2^n}}{4a^2-u^2}\right) = 1.$$

Hence m is even.

Proposition 3. If a is even and $y \equiv 3 \pmod{8}$, then n is even.

Proof. By Prop. 2, m is even. From (1) we have $1 \equiv 9^n \pmod{16}$ Hence n is even.

Theorem 1. Let a be odd, y = p odd prime, and $p \equiv 3 \pmod{4}$ in (1). If $m \neq 1$, then (l, m, n) = (2,2,2).

Proof. By Prop.1, n is even. Put l=2l', n=2n', and $(4a^2+p^2)^{n'}+(4a^2-p^2)^{l'}=A$, $(4a^2+p^2)^{n'}-(4a^2-p^2)^{l'}=B$. Clearly (A,B)=2. From (1) we have

$$2^{2m}a^mp^m = AB.$$

(2) $2^{2m}a^mp^m = AB.$ Assume $A \equiv 0 \pmod{p}$, then we have $(2a)^{2n'} + (2a)^{2l'} \equiv 0 \pmod{p}$, so