75. On the Dirichlet Form on a Lusinian State Space

By Kazuaki NAKANE

Department of Mathematics, Kanazawa University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

Introduction. The Dirichlet forms on locally compact state spaces have been studied by many authors. Recently this theory of Dirichlet forms has been extended to non-locally compact state spaces. Albeverio and Ma [1] gave a necessary and sufficient condition for the Dirichlet form on a metrizable topological state space to be associated with a special standard process. They called this Dirichlet form quasi-regular (cf. [3]). On the other hand, Shigekawa and Taniguchi [12] showed that various results known for locally compact state spaces, such as the Beurling-Deny formula, the uniqueness of the α -potentials, are also valid for Lusinian separable metric state spaces. The key lemma in [12] is a uniqueness statement for a measure which charges no set of zero capacity. Its proof needs the Gel'fand compactification (cf. [4], [9]). To use the Gel'fand compactification we must assume that there exists a dense subset consisting of continuous functions in domain of the Dirichlet form. However, this assumption is not necessary for the existence of the associated process (cf. [1]). In fact Albeverio, Röckner and Ma [3] showed the same results for quasi-Dirichlet form on general state spaces. They also used another type of compactification (cf. [10]).

In this note we shall show for the quasi-regular Dirichlet form the uniqueness statement of a measure charging no set of zero capacity without using any type of compactification.

2. Preliminary. Let X be a Lusinian separable metric space and let $\mathcal{B}(X)$ be its topological Borel field. Let ρ be its metric. We fix a probability measure m on $(X, \mathcal{B}(X))$ such that $\sup[m] = X$.

We consider a Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(X, m)$ (for its definition see e.g. [8]). We set

(2.1)
$$\mathscr{E}_1(f,g) \equiv \mathscr{E}(f,g) + (f,g), \quad f,g \in \mathscr{F},$$
 where (\cdot,\cdot) denotes the inner product of $L^2(X,m)$.

For an open subset G of X and any subset A of X, we define

(2.2)
$$\operatorname{Cap}(G) \equiv \inf \{ \mathcal{E}_1(u, u) ; u \in \mathcal{F} \text{ and } u \geq 1 \text{ } m\text{-a.e. on } G \},$$

(2.2)
$$\operatorname{Cap}(A) \equiv \inf \left\{ \operatorname{Cap}(G) ; G \text{ is open and } A \subseteq G \right\}.$$

Then we can show that this Cap is a Choquet capacity.

A statement depending on $x \in A$ is said to hold "quasi-everywhere" or simply "q.e.", if it holds on A except for a set of zero capacity with respect to Cap. A function $u: X \to R$ is said to be quasi-continuous if there exists a decreasing sequence $\{G_n\}_{n=1}^{\infty}$ of open sets such that $\operatorname{Cap}(G_n) \downarrow 0$, and $u|_{X \setminus G_n}$ is continuous on each $X \setminus G_n$.

3. The main theorem. We assume that the Dirichlet form $(\mathscr{E}, \mathscr{F})$ satis-