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1. Introduction. The Dirichlet forms on locally compact state spaces
have been studied by many authors. Recently this theory of Dirichlet forms
has been extended to non-locally compact state spaces. Albeverio and Ma [11
gave a necessary and sufficient condition for the Dirichlet form on a metriz-
able topological state space to be associated with a special standard process.
They called this Dirichlet form quasi-regular (cf. [3]). On the other hand,
Shigekawa and Taniguchi [12] showed that various results known for locally
compact state spaces, such as the Beurling-Deny formula, the uniqueness of
the c-potentials, are also valid for Lusinian separable metric state spaces.
The key lemma in [12] is a uniqueness statement for a measure which
charges no set of zero capacity. Its proof needs the Gel’land compactification
(cf. [4], [9]). To use the Gel’land compactification we must assume that there
exists a dense subset consisting of continuous functions in the
domain of the Dirichlet form. However, this assumption is not necessary for
the existence of the associated process (cf. [1]). In fact Albeverio, R0ckner
and Ma [3] showed the same results for quasi-Dirichlet form on general state
spaces. They also used another type of compactification (cf. [10]).

In this note we shall show for the quasi-regular Dirichlet form the
uniqueness statement of a measure charging no set of zero capacity without
using any type of compactification.

2. Preliminary. Let X be a Lusinian separable metric space and let
(X) be its topological Borel field. Let p be its metric. We fix a probability
measure m on (X, (X)) such that supp[m] X.

We consider a Dirichlet form (8, ) on L2(X, m) (for its definition see
e.g. [8]). We set

(2.1) l(f, g) =- 8(f, g) + (f, g), f, g ,
where (’,’) denotes the inner product of L2(X, m).

For an open subset G of X and any subset A of X, we define
(2.2) Cap(G) inf {8x(u, u) u and u >-- 1 m-a.e, on G},
(2.2) Cap(A) inf {Cap(G) G is open and A m G}.
Then we can show that this Cap is a Choquet capacity.

A statement depending on a: A is said to hold "quasi-everywhere" or
simply "q.e.", if it holds on A except for a set of zero capacity with respect to
Cap. A function u:X--+ lg is said to be quasi-continuous if there exists a

decreasing sequence {G}oo__ of open sets such that Cap(G) 0, and u]x\,
is continuous on each X\ G.

3. The main theorem. We assume that the Dirichlet form (8, ) saris-


