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1. Introduction and result. In [8] Miles derived the following system
(SP). It describes the motion of a lightly damped spherical pendulum, which
is forced to oscillate horizontally in the neighborhood of resonance:
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where @ > 0 and v € R represent a damping coefficient and a frequency
offset, respectively. Here (p,(¢), q,(8), p,(t), q,(¢t)) denotes slowly varying
amplitudes of degenerate modes 1 and 2 in a four dimensional phase space,
and we have set E = E(t) := p,(1)> + q,(t)" + p,(1)> + ¢,()>, M = M (t)
= (D) g, () — p(D) g, (8).

The aim of this paper is to estimate an upper bound for the dimension
of X analytically. Basically we make use of the Kaplan-Yorke formula. This
formula connects the upper bound with the Lyapunov exponents. This was
conjectured by Kaplan and Yorke [7] and proved by Constantin and Foias
[1]. In Eden, Foias and Temam [4], this enables to estimate the dimension of a
global attractor for the Lorenz system. (SP) consists of four equations
unlike the Lorenz system. We therefore adopt the technique used in Ishimura
and Nakamura [6].

Now we state our main result.

Theorem. Let X be the maximal compact invariant set of (SP). Let dimy
denote the Hausdorff dimension. For any v € R, we have the following :
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