40. Analytic Zariski Decomposition

By Hajime TSUJI

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kunihiko KODAIRA, M. J. A., Sept. 14, 1992)

1. Introduction. Let X be a projective variety and let D be a Cartier divisor on X. The following problem is fundamental in algebraic geometry.

Problem 1. Study the linear system $|\nu D|$ for $\nu \ge 1$.

To this problem, there is a rather well developed theory in the case of dim X = 1. In the case of dim X = 2, in early 60-th, O. Zariski reduced this problem to the case that D is nef(= numerically semipositive) by using his famous Zariski decomposition ([4]).

Recently Fujita, Kawamata etc. generalized the concept of Zariski decompositions to the case of dim $X \ge 3$ ([1, 2]). The definition is as follows.

Definition 1. Let X be a projective variety and let D be an R-Cartier divisor on X. The expression

 $D = P + N(P, N \in Div(X) \otimes \mathbf{R})$

is called a Zariski decomposition of D, if the following conditions are satisfied.

- 1. P is nef,
- 2. N is effective,

3. $H^0(X, \mathcal{O}_X([\nu P])) \simeq H^0(X, \mathcal{O}_X([\nu D]))$ holds for all $\nu \in \mathbb{Z}_{\geq 0}$ where []'s denote the integral parts of the divisors.

Although many useful applications of this decomposition have been known ([1, 2, 3]), as for the existence, very little has been known. There is the following (rather optimistic) conjecture.

Conjecture 1. Let X be a normal projective variety and let D be a pseudoeffective **R**-Cartier divisor on X. Then there exists a modification $f: Y \rightarrow X$ such that $f^* D$ admits a Zariski decomposition.

In this paper, I would like to announce a "weak solution" to this conjecture. Details will be published elsewhere. In this paper, all algebraic varieties are defined over C.

2. Statement of the results. Definition 2. Let X be a normal projective variety and let D be a \mathbf{R} -Cartier divisor on X. D is called big if

 $\kappa(D) := \limsup_{\nu \to +\infty} \frac{\log \dim H^0(X, \mathcal{O}_X([\nu D]))}{\log \nu} = \dim X$

holds. D is called pseudoeffective, if for any ample divisor H, $D + \varepsilon H$ is big for every $\varepsilon > 0$.

Definition 3. Let M be a complex manifold of dimension n and let $A_c^{p,q}(M)$ denote the space of $C^{\infty}(p, q)$ forms of compact support on M with usual Fréchet space structure. The dual space $D^{p,q}(M) := A_c^{n-p,n-q}(M)^*$ is called the space of (p, q)-currents on M. The linear operators $\partial: D^{p,q}(M) \to D^{p+1,q}(M)$ and $\overline{\partial}: D^{p,q}(M) \to D^{p,q+1}(M)$ is defined by