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33. Notes on Some Classical Series Associated with Discrete
Subgroups of U(1,n; C) on 0B"X0B" X 9B"
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(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1992)

Let U(1, n; C) be the group of unitary transformations. In the pre-
vious paper [2], we discussed the action of discrete subgroups of U1, n; C)
on 9B"X9B"X ... X9B", where 9B" is the boundary of the complex unit
ball. In [4], P. J. Nicholls considered the convergence of some series
associated with discrete subgroups of Mobius transformations on the
products of the boundary of the unit ball in real n-space.

Our purpose is to show two theorems on some classical series associ-
ated with discrete subgroups of U, n; C) acting on 0B"XoB"xoB".
Throughout this paper G denotes a discrete subgroup of U(1,n; C). Let
{91, 95 - -} be a complete list of elements of G. If g, is an element of G,
then g, is represented by a matrix (@{),.; ;<n,.. Let x=(x, -, 2,), y=
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We shall give our proofs.
Proof of Theorem 1. Let I'(g,) be the set of (x,¥,2) in 9B X 0B"XdB"

Yy -+, Y, and z=(z,, - - -, 2,) be points in dB".
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converges for almost every triple (x,y, z) tn dB" X 0B"X dB".
converges for every distinct points x, y and z in 0B™.
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Set
F= (M I'(g:).
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It follows from [2, Theorem 11] that F' is a fundamental set for the group
action on 9B"xX9B"xoB". Since F' is of positive measure and has no G-
equivalent points,
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where ¢* is the product measure on ¢B" X 0B" x ¢B™ derived from the meas-

ure ¢ on 0B™ (see [2, p. 288]). For (x,y,2)e F
> @)= | do*
g (F)
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