31. Retractive Nil-extensions of Regular Semigroups. II

By Stojan Bogdanović and Miroslav Ćirić Institute of Mathematics, Knez Mihailova 35, Beograd, Yugoslavia (Communicated by Shokichi Iyanaga, M. J. A., June 9, 1992)

Abstract: This paper is the continuation of [6]. Here we consider in particular retractive nil-extensions of unions of groups.

By Theorem 1, some criterions for a semigroup to be a retractive nilextension of a union of groups are given. A characterization of retractive nilextensions of semilattice of left and right groups (mixed property) is given by Theorem 2. For the related results see [2] and [5].

Throughout this paper, Z^+ will denote the set of all positive integers. A semigroup S is π -regular, if for every $\alpha \in S$ there exists $n \in Z^+$ such that $a^n \in a^n S a^n$. Let us denote by Reg(S) (Gr(S), E(S)) the set of all regular (completely regular, idempotent) elements of a semigroup S. A semigroup S is Archimedean, if for all $a, b \in S$ there exists $n \in Z^+$ such that $a^n \in SbS$. A semigroup S is completely Archimedean, if S is Archimedean and has a primitive idempotent (or, equivalently, if it is a nil-extension of a completely simple semigroup [1]). If e is an idempotent of a semigroup S, then by G_e we denote the maximal subgroup of S with e as its identity and $T_e = \{a \in S \mid (\exists n \in Z^+)a^n \in G_e\}$. For undefined notions and notations we refer [1], [10] and [6].

Veronesi's theorem [11]. A semigroup S is a semilattice of completely Archimedean semigroups, if and only if S is π -regular and Reg(S) = Gr(S).

Munn's lemma [9]. Let a be an element of a semigroup S such that a^n lies in some subgroup G of S for some $n \in \mathbb{Z}^+$. If e is an identity of G, then $ea = ae \in G_e$ and $a^m \in G_e$ for all $m \in \mathbb{Z}^+$, $m \ge n$.

Lemma 1 [5]. Let S be a nil-extension of a union of groups K. Then every retraction φ of S onto K has the following representation:

$$\varphi(x) = xe$$
 if $x \in T_e$, $e \in E(S)$.

Theorem 1. The following conditions on a semigroup S are equivalent:

- (i) S is a retractive nil-extension of a union of groups;
- (ii) S is π -regular and for all x, a, $y \in S$ there exists $n \in \mathbb{Z}^+$ such that (1) $xa^ny \in x^2Sy^2$;
- (iii) S is a subdirect product of a union of groups and a nil-semigroup. Proof. (i) \Rightarrow (ii). Let S be a retractive nil-extension of a union of groups K, with the retraction φ of S onto K. Let $x, a, y \in S$. Then there exists $n \in \mathbb{Z}^+$ such that $a^n \in K$, so $xa^ny \in K$. Let $x^m \in G_e$, $y^k \in G_f$, $m, k \in \mathbb{Z}^+$,