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Introduction. We write down explicitly the so called Satake trans-
form of Hecke algebra of some p-adic classical groups (0) with n=-2y, (Sp),
), (U"), (U-), using Macdonald’s idea for the p-adic Chevalley groups
(I2]). For our purpose, we have only to evaluate zonal spherical functions
(in §2) and the number of double cosets by the maximal compact subgroup
K (in §3). The details containing the case (0) with n=2y will be published
elsewhere.

§1. Preliminaries. Let k be a p-adic field where p does not lie over 2.
Let &’ be either k itself, a quadratic extension of k or the (unique) central
division quaternion algebra over k. (© denotes the maximal order of %'.
We denote by e the ramification index of &' /k, and P=(I) (resp. p=(x))
the prime ideal in %' (resp. k). We denote by x—Z (x e k) the canonical
involution. Let ¢ be an element of the center of % such that e=1, V a
right vector space over k' of dimension n, and {( , > a non-degenerate e-
hermitian form on V, i.e., a k-bilinear mapping V X V—k’ such that

(x, y>=e(y, x)y, <(xa,yby=alx,ydb foyallz,yeV, a,bek’.
It is known that we have the following five cases.
(0O) K=EKkande=1.
(Sp) kK =Fkand e=—1.
(U) K is a quadratic extension of k£ and e=1.
(U*) K is a division quaternion algebra over k and e=1.
(U-) K is a division quaternion algebra over k and e= —1.
Now, let v be the Witt index of V and put n=n,+2v. There exists a (not
uniquely determined) system of vectors {e,, e; (1 <i<y)} such that
(e, e;y={e;, e;y=0, <(e;,ée;y=0d,, foralli,j,
(0,; is Kronecker’s symbol). Set

Vio=Cek' +2ek), Ly={xeV,|{x,x)e O}, L=2e,0+2e;0+L,.
Then L is a maximal lattice and there is a system of vectors {f, A <i<ny}
such that

Ly=31,0, (S fp=0, ifi#j.
We define « (resp. p) to be the number of {f;} such that (f,, f;) € O (resp.
(S [i> e P). Note that a4+ p=n,.

We now take this basis {e;, -+, €, fi, -+, [y €l - - -, €} and identify a

I'-linear transformation g of V with a matrix (g,;) by
g: (e, -, eD—>(ey, - -, e)(9y).
Let G be the connected component of the group of similitudes of V, that is



