22. Examples of Essentially Non-Banach Representations^{*}

By Hitoshi SHIN'YA

Department of Mathematics and Physics, Ritsumeikan University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1991)

Let G be a locally compact unimodular group, K a compact subgroup of G. Let $\{\mathfrak{H}, T(x)\}$ be a topologically irreducible representation of G on a locally convex complete Hausdorff topological vector space \mathfrak{H} . We assume there exists an equivalence class δ of irreducible representation of K which is contained finitely many times in $\{\mathfrak{H}, T(x)\}$. Then the subspace $\mathfrak{H}(\delta)$ of all vectors transformed according to δ under T(k), $k \in K$, is finitedimensional, and there exists a usual projection $E(\delta)$ of \mathfrak{H} onto $\mathfrak{H}(\delta)$. After R. Godement [1] we call the function $\phi_{\delta}(x) = \operatorname{trace} [E(\delta)T(x)], x \in G$, a spherical function of type δ . A function $\rho(x)$ on G is called a seminorm if it is positive-valued, lower semicontinuous and satisfies $\rho(xy) \leq \rho(x)\rho(y)$ for $x, y \in G$. If there exists a seminorm $\rho(x)$ such that $|\phi_{\delta}(x)| \leq \rho(x)$ for $x \in G$, then ϕ_{δ} is called quasi-bounded. In the case when \mathfrak{H} is a Banach space, the corresponding spherical function ϕ_{δ} is quasi-bounded.

Even if a spherical function is defined from a non-Banach representation, it can be quasi-bounded, or equivalently equal to the one which is obtained from a Banach representation. For example, in the case when Gis a connected semisimple Lie group or a motion group on the plane, all spherical functions are quasi-bounded (cf. [2]). A topologically irreducible representation which defines non-quasi-bounded spherical functions is called an *essentially non-Banach representation*. Here we give examples of essentially non-Banach representations of a semidirect product group $G = S \rtimes K$, where S is a free group with infinitely many generators and K is a compact abelian group.

§1. A semidirect product group $G = S \rtimes K$. We denote by N or Z the set of natural numbers or integers respectively. Let S be a free group with discrete topology generated by infinitely many generators $s_n, n \in N$. The automorphism group $\operatorname{Aut} \langle s_n \rangle$ of the infinite cyclic group $\langle s_n \rangle = \{s_n^m \mid m \in Z\}$ consists of two elements, 1_n the identity and ψ_n the automorphism of $\langle s_n \rangle$ such that $\psi_n(s_n) = s_n^{-1}$. Let $K = \prod_{n \in N} \operatorname{Aut} \langle s_n \rangle$ be the direct product group which is compact with respect to the product topology. Then K is naturally embedded into $\operatorname{Aut} S$ as $k \cdot s = k_{n_1}(s_{n_1}^{m_1}) \cdots k_{n_p}(s_{n_p}^{m_p})$ for $k = (k_n) \in K$ and $s = s_{n_1}^{m_1} \cdots s_{n_p}^{m_p}(m_j \in Z, n_j \in N)$. The semidirect product group $G = S \rtimes K$ is locally compact and unimodular. In §2 we will construct K-finite topologically irreducible representations of G which are essentially non-Banach representations.

^{*)} Dedicated to Prof. N. Tatsuuma on his 60th birthday.