By Mamoru NUNOKAWA and Shinichi HOSHINO Department of Mathematics, University of Gunma

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1991)

Let P be the class of functions p(z) which are analytic in the unit disk $E = \{z : |z| < 1\}$, with p(0) = 1 and Re p(z) > 0 in E.

If $p(z) \in P$, we say p(z) is a Carathéodory function. It is well-known that if $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ is analytic in E and $f'(z) \in P$, then f(z) is univalent in E [1, 8].

Ozaki [5, Theorem 2] extended the above result to the following :

If f(z) is analytic in a convex domain D and

$$\operatorname{Re}\left(e^{i\alpha}f^{(p)}(z)\right) > 0$$
 in D

where α is a real constant, then f(z) is at most p-valent in D.

This shows that if $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ is analytic in E and Re $f^{(p)}(z) > 0$ in E.

$$\operatorname{Re} f^{(p)}(z) > 0 \qquad \text{in } E$$

then f(z) is p-valent in E.

Nunokawa improved the above result to the following:

Theorem A. Let $p \ge 2$. If $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ is analytic in E and $|\arg f^{(p)}(z)| < \frac{3}{4}\pi$ in E,

then f(z) is p-valent in E (cf. [3]).

Theorem B. Let
$$p \ge 2$$
. If $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ is analytic in E and
 $\operatorname{Re} f^{(p)}(z) > -\frac{\log (4/e)}{2 \log (e/2)} p!$ in E ,

then f(z) is p-valent in E (cf. [4]).

In this paper, we need the following lemmas.

Lemma 1 ([6], Lemma 4). Let p(z) be analytic in E with p(0)=1 and Re p(z)>1/2 in E.

Then for any function f(z), analytic in E, the function p(z)*f(z) takes its values in the convex hull of f(z), where p(z)*f(z) denotes the convolution or Hadamard product of p(z) with f(z).

Lemma 2 ([7]). Let p(z) be analytic in E with p(0)=1. Suppose that $\alpha > 0$, $\beta < 1$ and that for $z \in E$, Re $(p(z) + \alpha z p'(z)) > \beta$.

Then for $z \in E$,

Re
$$p(z) > 1 + 2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^n}{1+\alpha n}$$
.

The estimate is best possible for

$$p_0(z) = 2\beta - 1 + 2(1-\beta) \sum_{n=1}^{\infty} \frac{z^n(-1)^n}{1+\alpha n}.$$

Proof. For $z \in E$, write $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$, so that