Normal Bases and 2.invariants of Number Fields 62.

By Takashi FUKUDA*) and Keiichi KOMATSU**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Let Q be the rational number field, k be a number field, i.e. a finite algebraic extension of Q , S be a set of prime ideals of k and L a finite algebraic extension of k. We denote by \mathfrak{Q}_L the integer ring of L and v_n and additive valuation of L with respect to a prime ideal $\mathfrak p$ of L. We denote by $\mathcal{Q}_{L}(S)$ the ring of elements α in L with $v_{\alpha}(\alpha) \geq 0$ for all prime ideals p of L such that $p \cap k$ does not belong to S. Now let p be a fixed odd prime number, Z_p , the p-adic integer ring and K a Z_p -extension of k. Then there exists a tower of cyclic extensions of k

 $k=K_0\subset K_1\subset \cdots \subset K_n\subset \cdots \subset K$

such that K_n is an extension of k with the degree $[K_n : k] = p^n$. For the cyclotomic Z_n -extension k_{∞} of k, we write $k_n=(k_{\infty})_n$.

Recently, Kersten and Michalicek discussed normal bases of p -integer rings of intermediate fields of a Z_p -extension of a CM-field and Vandiver's conjecture. Furthermore, Fleckinger and Nguyen Quang Do have discussed normal bases of *p*-integer rings of intermediate fields of a Z_p -extension of a number field. In this paper, we investigate normal bases of S-integer rings of intermediate fields of a Z_p -extension of an imaginary quadratic field and the Iwasawa λ -invariant.

Now we define as follows:

Definition (cf. [4]). We say, a \mathbb{Z}_p -extension K/k has a normal S-basis, if each $\mathfrak{Q}_{K_n}(S)/\mathfrak{Q}_k(S)$ has a normal basis. Namely, there exists an element α_n of $\mathfrak{Q}_{K_n}(S)$ such that $\{\alpha_n^{\sigma} | \sigma \in G(K_n/k)\}$ is a free $\mathfrak{Q}_k(S)$ -basis of $\mathfrak{Q}_{K_n}(S)$, where $G(K_n/k)$ is the Galois group of K_n over k.

Let F be an imaginary quadratic field, F_{∞} the cyclotomic Z_{p} -extension of F and $\zeta_n=\exp((2\pi\sqrt{-1/p^n}))$. We put $k=F(\zeta_1)$ and $\zeta_d=G(k/F)$. Let δ be the order of Δ and $\chi: \Delta \rightarrow Z_n^{\times}$ the Teichmüller character (a homomorphism such that $\zeta_1^g = \zeta_1^{\chi(g)}$ for all $g \in \Delta$). We define

$$
e_i = \frac{1}{\delta} \sum_{g \in \Lambda} \chi(g)^i g^{-1} \in \mathbb{Z}_p[\Lambda]
$$

 $e_i = \frac{1}{\delta} \sum_{g \in J} \chi(g)^i g^{-1} \in Z_p[J]$
for each integer i. The main purpose of this paper is to prove the following:

Theorem. Let F be an imaginary quadratic field, p an odd prime **number,** F_{∞} , ζ_n , k , Δ and e_i as above. Let k^+ be the maximal real subfield of k, A^+ the p-primary part of the ideal class group of k^+ and S_0 the set of all prime ideals of F each of which has only one prime factor in $k(\zeta_2)$. We

^{*)} Department of Mathematics, Faculty of Science, Yamagata University.
**) Department of Mathematics. Tokyo University of Agriculture and Techne

Department of Mathematics, Tokyo University of Agriculture and Technology.