62. Normal Bases and λ -invariants of Number Fields

By Takashi FUKUDA^{*)} and Keiichi KOMATSU^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Let Q be the rational number field, k be a number field, i.e. a finite algebraic extension of Q, S be a set of prime ideals of k and L a finite algebraic extension of k. We denote by \mathfrak{Q}_L the integer ring of L and $v_{\mathfrak{p}}$ an additive valuation of L with respect to a prime ideal \mathfrak{p} of L. We denote by $\mathfrak{Q}_L(S)$ the ring of elements α in L with $v_{\mathfrak{p}}(\alpha) \geq 0$ for all prime ideals \mathfrak{p} of Lsuch that $\mathfrak{p} \cap k$ does not belong to S. Now let p be a fixed odd prime number, Z_p the p-adic integer ring and K a Z_p -extension of k. Then there exists a tower of cyclic extensions of k

 $k = K_0 \subset K_1 \subset \cdots \subset K_n \subset \cdots \subset K$

such that K_n is an extension of k with the degree $[K_n:k]=p^n$. For the cyclotomic Z_p -extension k_{∞} of k, we write $k_n=(k_{\infty})_n$.

Recently, Kersten and Michaliček discussed normal bases of *p*-integer rings of intermediate fields of a Z_p -extension of a CM-field and Vandiver's conjecture. Furthermore, Fleckinger and Nguyen Quang Do have discussed normal bases of *p*-integer rings of intermediate fields of a Z_p -extension of a number field. In this paper, we investigate normal bases of *S*-integer rings of intermediate fields of a Z_p -extension of an imaginary quadratic field and the Iwasawa λ -invariant.

Now we define as follows:

Definition (cf. [4]). We say, a Z_p -extension K/k has a normal S-basis, if each $\mathfrak{Q}_{K_n}(S)/\mathfrak{Q}_k(S)$ has a normal basis. Namely, there exists an element α_n of $\mathfrak{Q}_{K_n}(S)$ such that $\{\alpha_n^{\sigma} | \sigma \in G(K_n/k)\}$ is a free $\mathfrak{Q}_k(S)$ -basis of $\mathfrak{Q}_{K_n}(S)$, where $G(K_n/k)$ is the Galois group of K_n over k.

Let F be an imaginary quadratic field, F_{∞} the cyclotomic Z_p -extension of F and $\zeta_n = \exp(2\pi\sqrt{-1}/p^n)$. We put $k = F(\zeta_1)$ and $\Delta = G(k/F)$. Let δ be the order of Δ and $\chi: \Delta \to Z_p^{\times}$ the Teichmüller character (a homomorphism such that $\zeta_1^n = \zeta_1^{\chi(g)}$ for all $g \in \Delta$). We define

$$e_i = \frac{1}{\delta} \sum_{g \in \mathcal{A}} \chi(g)^i g^{-1} \in \boldsymbol{Z}_p[\mathcal{A}]$$

for each integer i. The main purpose of this paper is to prove the following:

Theorem. Let F be an imaginary quadratic field, p an odd prime number, F_{∞} , ζ_n , k, Δ and e_i as above. Let k^+ be the maximal real subfield of k, A^+ the p-primary part of the ideal class group of k^+ and S_0 the set of all prime ideals of F each of which has only one prime factor in $k(\zeta_2)$. We

^{*)} Department of Mathematics, Faculty of Science, Yamagata University.

^{**)} Department of Mathematics, Tokyo University of Agriculture and Technology.