57. A Reduction of Hamiltonian Systems with Multi-time Variables Along a Regular Singularity

By Hironobu Kimura,*) Atusi Matumiya,**)
and Kyoichi Takano**)
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1991)

1. Introduction. Let $(t, x)=\left(t_{1}, \cdots, t_{N}, x_{1}, \cdots, x_{2 n}\right)$ be the coordinates of $\mathbf{C}^{2 n+N}$ and let $D(r, \rho)$ be an unbounded domian in $\mathbf{C}^{2 n+N}$ defined by

$$
D(r, \rho):=\left\{(t, x) \in \mathbf{C}^{2 n+v} ;|t|<r,\left|x_{1} x_{n+1}\right|,\left|t_{1} x_{n+1}\right|,\left|x_{i}\right|<\rho,(i \neq n+1)\right\}
$$

where $|a|:=\max \left\{\left|a_{1}\right|, \cdots,\left|a_{m}\right|\right\}$ for $a=\left(a_{1}, \cdots, a_{m}\right) \in \mathbf{C}^{m}$. The projection image to $D(r, \rho)$ to the t-space is a polydisk with center 0 , which we denote by $\Delta(r):=\left\{t \in \mathbf{C}^{N} ;|t|<r\right\}$. The domain $D(r, \rho)$ is a neighbourhood of $(0,0)$.

Consider a completely integrable Hamiltonian system of the form :

$$
t_{i} \partial_{i} x=J H_{x}^{i}, \quad J=\left(\begin{array}{rc}
0 & I_{n} \tag{1}\\
-I_{n} & 0
\end{array}\right), \quad 1 \leq i \leq N
$$

with Hamiltonians H^{1}, \cdots, H^{N} holomorphic in $D(r, \rho)$, where $\partial_{i}=\partial / \partial t_{i}$ and $H_{x}^{i}:={ }^{t}\left(H_{x_{1}}^{i}, \cdots, H_{x_{2 n}}^{i}\right)$ is the gradient vector of H^{i} in x. The system (1) is said to have a singularity of regular type along a hyperplane $S:=\{t \in \Delta(r)$; $\left.t_{1}=0\right\}$, if $H^{i} / t_{i}(2 \leq i \leq N)$ are holomorphic in $D(r, \rho)$ and if H^{1} does not have t_{1} as a factor.

The purpose of this note is to obtain a reduction theorem for the system (1) with a singularity of regular type along S (Theorem 1). This result will be applied to the Hamiltonian system \mathcal{H}_{n} (see § 2) which is a generalization of the sixth Painleve system [7] to a system of partial differential equations obtained by a monodromy preserving deformation.

We say that a symplectic transformation $\phi:(t, x) \rightarrow(t, X)$ is \#-symplectic if ϕ is holomorphic on $D(r, \rho)$ and if $D\left(r^{\prime}, \rho^{\prime}\right) \subset \phi(D(r, \rho))$ for some positive r^{\prime} and ρ^{\prime}.

We define a class of Hamiltonians studied in this note. Consider a Hamiltonian system (1) with a Hamiltonian $\mathbf{H}=\left(H^{1}, \cdots, H^{N}\right)$. We expand H^{i} in x as

$$
H^{i}(t, x)={ }^{t} H_{x}^{i}(t, 0) x+\frac{1}{2} t x H_{x x}^{i}(t, 0) x+\sum_{\substack{\alpha+e_{1}+e_{n+1} \geq 0 \\ \mid \alpha+e_{1}+e_{n}+1 \geq 3}} h_{\alpha}^{i}(t) x^{\alpha+e_{1}+e_{n+1}}
$$

for $1 \leq i \leq N$, where $H_{x x}^{i}$ denotes the Hessian of H^{i} with respect to x and $x^{\alpha+e_{1}+e_{n+1}}=x_{1}^{\alpha_{1}+1} \cdots x_{n}^{\alpha_{n}} x_{n+1}^{\alpha_{n}+1+1} \cdots x_{2 n}^{\alpha_{2} n}$.

We assume the following four conditions:
(A-1) $H^{1}, H^{2} / t_{2}, \cdots, H^{N} / t_{N}$ are bounded holomorphic functions in $D(r, \rho)$.
(A-2) H^{1} satisfies

[^0]
[^0]: *) Department of Mathematics, College of Arts and Sciences, University of Tokyo. **) Department of Mathematics, Faculty of Sciences, Kobe University.

