57. A Reduction of Hamiltonian Systems with Multi-time Variables Along a Regular Singularity

By Hironobu KIMURA,^{*)} Atusi MATUMIYA,^{**)} and Kyoichi TAKANO^{**)}

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1991)

1. Introduction. Let $(t, x) = (t_1, \dots, t_N, x_1, \dots, x_{2n})$ be the coordinates of \mathbb{C}^{2n+N} and let $D(r, \rho)$ be an unbounded domian in \mathbb{C}^{2n+N} defined by

$$\begin{split} D(r,\rho) &:= \{(t,x) \in \mathbf{C}^{2n+N}; |t| < r, |x_i x_{n+1}|, |t_1 x_{n+1}|, |x_i| < \rho, (i \neq n+1)\} \\ \text{where } |a| &:= \max\{|a_1|, \cdots, |a_m|\} \text{ for } a = (a_1, \cdots, a_m) \in \mathbf{C}^m. \text{ The projection} \\ \text{image to } D(r,\rho) \text{ to the } t\text{-space is a polydisk with center } 0, \text{ which we denote} \\ \text{by } \Delta(r) &:= \{t \in \mathbf{C}^N; |t| < r\}. \text{ The domain } D(r,\rho) \text{ is a neighbourhood of } (0,0). \end{split}$$

Consider a completely integrable Hamiltonian system of the form :

(1)
$$t_i \partial_i x = J H_x^i, \qquad J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}, \qquad 1 \le i \le N$$

with Hamiltonians H^1, \ldots, H^N holomorphic in $D(r, \rho)$, where $\partial_i = \partial/\partial t_i$ and $H^i_x := {}^i(H^i_{x_1}, \ldots, H^i_{x_{2n}})$ is the gradient vector of H^i in x. The system (1) is said to have a singularity of regular type along a hyperplane $S := \{t \in \Delta(r); t_1=0\}$, if H^i/t_i ($2 \le i \le N$) are holomorphic in $D(r, \rho)$ and if H^1 does not have t_1 as a factor.

The purpose of this note is to obtain a reduction theorem for the system (1) with a singularity of regular type along S (Theorem 1). This result will be applied to the Hamiltonian system \mathcal{H}_n (see § 2) which is a generalization of the sixth Painlevé system [7] to a system of partial differential equations obtained by a monodromy preserving deformation.

We say that a symplectic transformation $\phi: (t, x) \rightarrow (t, X)$ is \sharp -symplectic if ϕ is holomorphic on $D(r, \rho)$ and if $D(r', \rho') \subset \phi(D(r, \rho))$ for some positive r' and ρ' .

We define a class of Hamiltonians studied in this note. Consider a Hamiltonian system (1) with a Hamiltonian $\mathbf{H} = (H^1, \dots, H^N)$. We expand H^i in x as

$$H^{i}(t, x) = {}^{t}H^{i}_{x}(t, 0) x + \frac{1}{2} {}^{t}xH^{i}_{xx}(t, 0) x + \sum_{\substack{\alpha + e_{1} + e_{n+1} \ge 0 \\ |\alpha + e_{1} + e_{n+1}| \ge 3}} h^{i}_{\alpha}(t) x^{\alpha + e_{1} + e_{n+1}}$$

for $1 \le i \le N$, where H_{xx}^i denotes the Hessian of H^i with respect to x and $x^{a+e_1+e_{n+1}} = x_1^{a_1+1} \cdots x_n^{a_n} x_{n+1}^{a_{n+1}+1} \cdots x_{2n}^{a_{2n}}$.

We assume the following four conditions:

(A-1) $H^1, H^2/t_2, \dots, H^N/t_N$ are bounded holomorphic functions in $D(r, \rho)$. (A-2) H^1 satisfies

^{*)} Department of Mathematics, College of Arts and Sciences, University of Tokyo.

^{**&#}x27; Department of Mathematics, Faculty of Sciences, Kobe University.