6. On a Determination of Real Quadratic Fields of Class Number One and Related Continued Fraction Period Length Less than 25

By R. A. MOLLIN^{*)} and H. C. WILLIAMS^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 14, 1991)

§1. Introduction. The primary thrust of this paper is to investigate real quadratic fields $Q(\sqrt{d})$ of class number h(d) equal to 1 when related to the period length, k of the continued fraction expansion of ω where $\omega = (\sigma - 1 + \sqrt{d})/\sigma$ with $\sigma = \begin{cases} 1 & \text{if } d \equiv 2, 3 \pmod{4} \\ 2 & \text{if } d \equiv 1 \pmod{4} \end{cases}$. We actually determine, (with only one possible value remaining, whose very existence would be a counterexample to the Riemann hypothesis), all those positive square-free integers d with h(d)=1 and $k \leq 24$. Moreover our new approach allows us to reformulate the Gauss conjecture as to the infinitude of real quadratic fields $K = Q(\sqrt{d})$ with d positive square-free and h(d)=1, in terms of the theory of continued fractions.

§2. Notations and preliminaries. We let \mathcal{O}_K denote the maximal order in $K = Q(\sqrt{d})$.

Throughout d will be assumed to be a positive square-free integer. For convenience sake we collect together basic facts involving continued fractions which we will be using throughout the paper.

For ω as above let the continued fraction expansion of ω be denoted by $\omega = \langle a, \overline{a_1, \dots, a_k} \rangle$. Then $a_0 = a = \lfloor \omega \rfloor$, $a_i = \lfloor (P_i + \sqrt{d}) / Q_i \rfloor$ for $i \ge 1$ (here $\lfloor \rfloor$ denotes the greatest integer function), where $(P_0, Q_0) = (1, 2)$ if $d \equiv 1 \pmod{4}$ and $(P_0, Q_0) = (0, 1)$ otherwise. Also,

(2.1)	$P_{i+1} = a_i Q_i - P_i$	for $i \ge 0$,
(2.2)	$Q_{i+1}Q_i = d - P_{i+1}^2$	for $i \ge 0$, and
(2.3)	$a_i = a_{k-i}$	for $1 \le i \le k-1$.
Moreover	either,	
(2.4)	$P_{i} = P_{i+1}$	in which case $k=2i$ or
(2.5)	$Q_i = Q_{i+1}$	in which case $k=2i+1$.

Now we give some background to the research involved herein. In [2] Kim and Leu showed that 2 conjectures (one of Chowla [1], and one of Yokoi [15]) are valid with one possible exceptional value remaining, and therefore that one of the 2 conjectures is valid with the remaining one failing for at most one value. In [7] we proved Chowla's conjecture under the assumption of the generalized Riemann hypothesis (GRH). Subsequently we extended

^{*)} Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.

^{**} Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.