43. Some Dolbeault Isomorphisms for Locally Trivial Fiber Spaces and Applications

By Hideaki KAZAMA*) and Takashi UMENO**)

(Communicated by Kunihiko KODAIRA, M. J. A., May 13, 1991)

1. Let N be a paracompact complex manifold of complex dimension n, S a Stein manifold of complex dimension l and $\pi: M \rightarrow N$ a locally trivial holomorphic fiber space whose fibers are biholomorphic onto S. Put m := $\dim_{\mathbb{C}} M(=n+l)$. Let $\{D_n\}$ be a locally finite open covering of N satisfying that each D_{α} is a coordinate open subset with the trivialization $i_{\alpha}: \pi^{-1}(D_{\alpha})$ $\rightarrow D_a \times S$ with $\prod_a \cdot i_a = \pi$, where $\prod_a \cdot denotes the projection <math>D_a \times S \ni (a, b) \mapsto$ $a \in D_a$. Let $\{U_a\}$ be a sufficiently fine and locally finite open covering of S so that each U_{σ} is biholomorphic onto a polydisc in C^{i} . We sometimes identify $\pi^{-1}(D_{\alpha})$ with $D_{\alpha} \times S$. Let $z_{\alpha} = (z_{\alpha}^{1}, \dots, z_{\alpha}^{n})$ be a local coordinate defined on D_{α} and $w_{\sigma} = (w_{\sigma}^{1}, \dots, w_{\sigma}^{l})$ a local coordinate defined on U_{σ} . We put $\zeta_{\alpha,\sigma}^i = z_{\alpha}^i$ $(1 \le i \le n)$ and $\zeta_{\alpha,\sigma}^{n+j} = w_{\sigma}^j$ $(1 \le j \le l)$. Then $\zeta_{\alpha,\sigma} = (\zeta_{\alpha,\sigma}^1, \dots, \zeta_{\alpha,\sigma}^{n+l}) =$ $(z_{\alpha}^{1}, \dots, z_{\alpha}^{n}, w_{\sigma}^{1}, \dots, w_{\sigma}^{l})$ defines a local coordinate in $i_{\alpha}^{-1}(D_{\alpha} \times U_{\sigma})$. For an open subset $V \subset M$, we put $\mathcal{P}(V) := \{f \mid f \text{ is of class } C^{\infty} \text{ in } V \text{ and for any } \}$ $z \in \pi(V)$, $f \mid \pi^{-1}(z) \cap V$ is holomorphic}. We denote by \mathcal{F} the sheaf defined by the presheaf $\{\mathscr{D}(V)\}$. Put $V_{\alpha,\sigma} := V \cap i_{\alpha}^{-1}(D_{\alpha} \times U_{\sigma})$ and $\mathscr{D}^{r,p}(V) := \{\varphi \mid \varphi \text{ is } v \in V\}$ a $C^{\infty}(r, p)$ -form on V and $\varphi | V_{\alpha,\sigma} = \sum_{I,J} \varphi_{IJ} d\zeta^{I}_{\alpha,\sigma} \wedge d\bar{z}^{J}_{\alpha}, \varphi_{IJ} \in \mathcal{P}(V_{\alpha,\sigma})$ for each α and σ }, where $I = (i_1, \dots, i_r)$, $J = (j_1, \dots, j_p)$, $1 \le i_1 \le \dots \le i_r \le n+l$, and $1 \le n+l$ $j_1 \leq \cdots \leq j_p \leq n$. We get the sheaf $\mathcal{P}^{r,p}$ defined by the presheaf $\{\mathcal{P}^{r,p}(V)\}$ for $0 \le r \le n+l$ and $0 \le p \le n$. Let Ω^r be the sheaf of germs of holomorphic rforms on M. We have an exact sequence

 $0 \to \Omega^r \to \mathcal{F}^{r,0} \to \mathcal{F}^{r,1} \to \cdots \to \mathcal{F}^{r,n} \to 0.$

For an open subset $W \subset \pi^{-1}(D_a)$, put $\mathcal{E}_a^{r,p,s}(W) := \{\psi | \psi \text{ is a } C^{\infty}(r, p+s)\text{-form}$ in W and $\varphi | W \cap i_a^{-1}(D_a \times U_s) = \sum_{I,J,K} \psi_{IJK} d\zeta_{a,\sigma}^I \wedge d\overline{z}_a^J \wedge d\overline{w}_s^K$ for each $\sigma\}$, where $K = (k_1, \dots, k_s)$ and $1 \leq k_1 \leq \dots \leq k_s \leq l$. The presheaf $\{\mathcal{E}_a^{r,p,s}(W)\}$ makes the sheaf $\mathcal{E}_a^{r,p,s}$ on $\pi^{-1}(D_a)$. Then we have an exact sequence

 $0 \rightarrow \mathfrak{P}^{r,p} | \pi^{-1}(D_a) \rightarrow \mathfrak{C}^{r,p,0}_{a} \rightarrow \mathfrak{C}^{r,p,1}_{a} \rightarrow \cdots \rightarrow \mathfrak{C}^{r,p,l}_{a} \rightarrow 0$ for each α , where the mapping $\mathcal{C}^{r,p,s}_{a} \rightarrow \mathcal{C}^{r,p,s+1}_{a}$ is induced by the Cauchy-Riemann equation $\frac{\partial f(z,w)}{\partial w_j} = g(z,w)$ with C^{∞} parameter $z \in D_a$ and using the standard argument for Dolbeault lemma, we can prove

$$H^{q}(D_{a} \times U_{o}, \mathcal{Q}^{r, p}) \cong \frac{\{\varphi \in H^{0}(D_{a} \times U_{o}, \mathcal{C}_{a}^{r, p, q}) \mid \bar{\partial}_{S}\varphi = 0\}}{\bar{\partial}_{S}H^{0}(D_{a} \times U_{o}, \mathcal{C}_{a}^{r, p, q-1})} = 0$$

^{*)} Department of Mathematics, College of General Education, Kyushu University. This author was partially supported by Grant-in-Aid for Scientific Research (No. 02640137), Ministry of Education, Science and Culture.

^{**)} Department of Mathematics, Kyushu Sangyo University.