37. A Note on Poincaré Sums of Galois Representations

By Takashi Ono

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., May 13, 1991)

This note is a fruit of recent conversations with Mr. Morishita on building non-abelian Kummer theory after the model of Weil [6].

Let k be any field, K be a finite Galois extension of k and ρ be a krepresentation of the Galois group G = G(K/k). Denote by K_{ρ} the intermediate field of the extension K/k which corresponds to the subgroup Ker ρ of G by Galois theory. In this paper, we shall supply an elementary construction of K_{ρ} over k which works simultaneously for all ρ 's ((2.6) Theorem). When the characteristic of k is zero, we shall rewrite everything in terms of the character χ of ρ (§ 3).

§ 1. $g(\theta)$. Notation being as above, consider the following elements in the group ring K[G]:

$$(1.1) g(x) = \sum_{s \in G} x^s s, x \in K^{(1)}.$$

We want to find $x \in K$ such that $g(x) \in K[G]^{\times}$, the group of invertible elements of the ring K[G]. Let us call a $\theta \in K$ a normal basis element if the set $\{\theta^s ; s \in G\}$ forms a normal basis for K/k.

(1.2) Proposition. If $\theta \in K$ is a normal basis element for K/k, then $g(\theta) \in K[G]^{\times}$.

Proof. Let
$$u = \sum_{t} x_{t}t$$
 with unknown $x_{t} \in K$. We have
 $g(\theta)u = \sum_{s} \theta^{s}s \sum_{t} x_{t}t = \sum_{s,t} \theta^{st-1}x_{t}s$
 $= \sum_{s} (\sum_{t} \theta^{st-1}x_{t})s.$

Since det $(\theta^{st-1}) \neq 0$, 2) one finds $x_t, t \in G$, so that

$$\sum_{t} \theta^{st^{-1}} x_t = \begin{cases} 1 & \text{if } s = 1, \\ 0 & \text{if } s \neq 1. \end{cases}$$

Hence $g(\theta)u=1$, i.e., $u=\sum_{t} x_{t}t$ is a right inverse of $g(\theta)$ in K[G]. Similarly, one finds a left inverse v of $g(\theta)$. Since u=v by the associativity of multiplication in K[G], $g(\theta)$ is an invertible element. Q.E.D.

§ 2. $P_{\rho}(\theta)$. K, k, G being as before, let ρ be a k-representation of G of degree n:

$$(2.1) \qquad \rho: G \longrightarrow GL_n(k)$$

The map ρ extends, by K-linearity, to a K-representation, written still by ρ , of the ring K[G]:

¹⁾ If $x \in K$ and $s \in G$, then the action of s on x will be denoted by sx or x^s . Since we use the convention s(tx) = (st)x, $t \in G$, we have $(x^t)^s = x^{st}$.

²⁾ As for basic facts on normal bases, see [3, pp. 290-295].