28. Universal R-matrices for Quantum Groups Associated to Simple Lie Superalgebras

By Hiroyuki YAMANE

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1991)

Introduction. Let H be a Hopf algebra with coproduct $\Delta: H \to H \otimes H$. Let $\mathcal{R} = \sum_i a_i \otimes b_i \in H \otimes H$ be an invertible element. The triple (H, Δ, \mathcal{R}) is called a *quasi-triangular Hopf algebra* if \mathcal{R} satisfies the following properties (see [1]):

(0.1)
$$\overline{\mathcal{A}}(x) = \mathcal{R}\mathcal{A}(x)\mathcal{R}^{-1} \qquad (x \in H), \\ (\mathcal{A} \otimes id)(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{23}, \qquad (id \otimes \mathcal{A})(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{12}$$

where $\Delta = \tau \circ \Delta$, $\tau(x \otimes y) = y \otimes x$ and $\Re_{12} = \sum_i a_i \otimes b_i \otimes 1$, $\Re_{13} = \sum_i a_i \otimes 1 \otimes b_i$, $\Re_{23} = \sum_i 1 \otimes a_i \otimes b_i$. The \Re is called the *universal R-matrix*. From this definition, it follows that \Re satisfies the Yang-Baxter equation:

Let \mathcal{G} be a complex simple Lie algebra and $U(\mathcal{G})$ the universal enveloping algebra of \mathcal{G} . In 1985, Drinfeld [1] and Jimbo [2] associated to each \mathcal{G} , the *h*-adic topologically free C[[h]]-Hopf algebra $(U_h(\mathcal{G}), \mathcal{A})$ such that $U_h(\mathcal{G})/hU_h(\mathcal{G}) = U(\mathcal{G})$, which is now called the quantum group or the quantized enveloping algebra. Moreover Drinfeld [1] gave a method of constructing an element $\mathcal{R} = U_h(\mathcal{G}) \otimes U_h(\mathcal{G})$ such that $(U_h(\mathcal{G}), \mathcal{A}, \mathcal{R})$ is a quasitriangular Hopf algebra. His method is called the quantum double construction. By using this method, Rosso [9] gave an explicit formula of \mathcal{R} for $\mathcal{G} = sl_n(\mathcal{C})$, and Kirillov-Reshetikhin [6], Levendorskii-Soibelman [8] gave such a formula for any \mathcal{G} .

Let $\tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}_0 \oplus \tilde{\mathcal{Q}}_1$ be a complex simple Lie superalgebra of types A - G and $U(\tilde{\mathcal{Q}})$ the universal enveloping superalgebra of $\tilde{\mathcal{Q}}$. In this note, we associate to each $\tilde{\mathcal{Q}}$, an *h*-adic topological C[[h]]-Hopf superalgebra $(U_h(\tilde{\mathcal{Q}}), \Delta^s)$ such that $U_h(\tilde{\mathcal{Q}})/hU_h(\tilde{\mathcal{Q}}) = U(\tilde{\mathcal{Q}})$. In fact, the definition of $U_h(\tilde{\mathcal{Q}})$ depends on a choice of the Cartan matrix and the parities of the simple roots of $\tilde{\mathcal{Q}}$. (For the terminologies *Lie superalgebra* and *Hopf superalgebra*, see [4, 6].) We also introduce an *h*-adic topological Hopf algebra $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s)$. The $U_h^s(\tilde{\mathcal{Q}})$ contains $U_h(\tilde{\mathcal{Q}})$ as a subalgebra and the Hopf algebra structure of $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s)$. In this note, by using the quantum double construction, we construct an element $\mathfrak{R} \in U_h^s(\tilde{\mathcal{Q}}) \otimes U_h^s(\tilde{\mathcal{Q}})$ explicitly so that $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s, \mathfrak{R})$ is a quasi-triangular Hopf algebra. In the process of constructing \mathfrak{R} , we can also show that $U_h^s(\tilde{\mathcal{Q}})$ are topologically free.

Details omitted here will be published elsewhere.

After I finished this work, Professor E. Date informed me about the