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1. Introduction. In ring theory, it is well known that regular duo
rings are characterized in terms of quasi-ideals (see [1, 3, 4]). The purpose
o this note is to extend the above result to a class o regular duo near-rings.
As to terminology and notation, we ollow the usage in [2].

2. Preliminaries. Let N be a near-ring, which always means right
one throughout this note.

If A, B and C are three non-empty subsets of N, then AB (ABC) denotes
the set of all finite sums of the form ab with a e A, b e B (abc
with a, e A, b e B, c e C).

A right N-subgroup (left N-subgroup) of N is a subgroup H of (N, +)
such that HN_H (NH_H). A quasi-ideal of a zero-symmetric near-ring
N is a subgroup Q of (N, +) such that QN NQ_Q. Right N-subgroups
and left N-subgroups are quasi-ideals. The intersection of a family of
quasi-ideals is again a quasi-ideal.

An element n of N is said to be regular i n=nxn for some x e N, and
N is called regular if every element of N is regular.

Lemma 1. Let N be a regular zero-symmetric near-ring. Then the
following assertions hold"

( ) For every quasi-ideal Q of N, Q--QNQ--QNf NQ.
(ii) For every right N-subgroup R and left N-subgroup L of N, RL=

RfL.
Proof. (i) Let Q be a quasi-ideal of N, that is, QNfNQ_Q. By

the regularity of N, Q QNQ. Moreover we have QNQ QN and QNQ

_
NQ. Hence it follows that Q QNQ

_
QN ( NQ Q. Thus Q QNQ QN

fNQ.
(ii) Let R and L be right and left N-subgroups of N, respectively.

Then RL_RL always holds. So we have to show only that an arbitrary
element n of the intersection R L lies in RL. By the regularity o the
element n, there exists an x in N such that n=nxn. Since n e R and xn e L,
we have n=nxn e RL.

For an element n .of a near-ring N, (n)r ((n))denotes the principal right

(left) N-subgroup of N generated by n, and [n] denotes the subgroup of
(N, -k) generated by n.

Lemma 2. Let N be a near-ring with identity and n an element of N.
Then (n),--[n]N and (n)=Nn.


