31. A Two-Parameter Quantization of GL(n) (Summary)

By Mitsuhiro TAKEUCHI Institute of Mathematics, University of Tsukuba (Communicated by Shokichi Iyanaga, m. J. A., May 14, 1990)

1. One-parameter quantizations (or q-analogues) of the general linear group GL(n) are known in two ways. The standard one arises as a dual Hopf algebra to the Drinfeld-Jimbo quantized enveloping algebra $U_q(\mathfrak{gl}(n))$ and is studied by many authors [5] [2] [6] [9] [8] [3]. The second one was defined by Dipper-Donkin [1]. One can define the quantum determinant for both quantizations. It is central in the first case, but not in the latter case.

We construct a two-parameter quantization $GL_{\alpha,\beta}(n)$ of GL(n) depending on two units α , β in the base ring. The above known q-analogues are obtained as special cases by taking (q, q) and (1, q) as (α, β) respectively. Further, we construct a two-parameter quantized enveloping algebra $U_{\alpha,\beta}$ associated with $GL_{\alpha,\beta}(n)$. The Drinfeld-Jimbo algebra $U_q(\mathfrak{gl}(n))$ is obtained as a quotient Hopf algebra of $U_{q,q}$.

2. We work over a commutative ring k. Let α and β be two units in k. Let $M_{\alpha,\beta}$ be the k-algebra defined by n^2 generators x_{ij} $(1 \le i, j \le n)$ and the following relations:

(2. 1) $x_{ik} x_{ij} = \alpha x_{ij} x_{ik}$ if j < k. (2. 2) $x_{jk} x_{ik} = \beta x_{ik} x_{jk}$ if i < j. (2. 3) $x_{jk} x_{il} = \beta \alpha^{-1} x_{il} x_{jk}$, $x_{jl} x_{ik} - x_{ik} x_{jl} = (\beta - \alpha^{-1}) x_{il} x_{jk}$ if i < j and k < l.

The algebra $M_{\alpha,\beta}$ is a (non-commutative) polynomial algebra in x_{ij} in any ordering. This means if w_1, \dots, w_N $(N=n^2)$ is an arbitrary arrangement of x_{ij} $(1 \le i, j \le n)$, then the monomials $w_1^{e_1} \cdots w_N^{e_N}$ $(e_i \in \mathbb{N})$ form a free *k*-base for $M_{\alpha,\beta}$. If *k* is an integral domain, there is no non-zero divisor in $M_{\alpha,\beta}$.

The algebra $M_{\alpha,\beta}$ has a bialgebra structure such that

$$\Delta x_{ij} = \sum_{s=1}^{n} x_{is} \otimes x_{sj}, \quad \varepsilon x_{ij} = \delta_{ij}.$$

The quantum determinant g = |X| is defined by

$$g = \sum_{\sigma} (-\beta)^{-\iota(\sigma)} x_{\sigma(1),1} \cdots x_{\sigma(n),n}$$

= $\sum_{\sigma} (-\alpha)^{-\iota(\sigma)} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$

where σ ranges over all permutations of *n* letters, and $l(\sigma)$ denotes the number of inversions. It is a group-like element, i.e., we have

$$\Delta g = g \otimes g, \quad \varepsilon g = 1.$$

It is a non-zero divisor of $M_{\alpha,\beta}$ and we have

$$x_{ij}g = (\beta \alpha^{-1})^{i-j}gx_{ij}$$