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29. An Additive Theory of the Zeros of
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The purpose of the present article is to present an additive theory of
the zeros of the Riemann zeta function {(s). The details with some more
general results will appear elsewhere.

We recall first the well-known Riemann-von Mangoldt formula for the
number N(T) of the zeros of {(s) in 0<Res<1, 0<Im s<T (cf. p. 179 and
p. 256 of Titchmarsh [8]).
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where T> T, and S(T)=(1/z) arg {((1/2)+¢T)=0(og T).

Under the Riemann Hypothesis (R.H.), it is well-known that S(T)=
O(log T'/loglog T').

We recall second Landau’s theorem on an arithmetic connection of the
zeros with a prime number (cf. Landau [7]).
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for any x>1, where p=pg+1% denotes a zero of {(s) and A(x)=logp, if
x=p*, with a prime number p and a positive integer %, and =0 otherwise.
Under R.H., this can be improved as follows (cf. Fujii [2] and [6]).
(B) (Under R.H.): For any «>1and T>T,,
T 2@+ log (T | 2r) ( log T )
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We recall next the following result on an arithmetic connection of the
zeros with a rational number (cf. Fujii [1], [2], [3] and [4]). We put e(x)=

e2ni$.

(C) (Under R.H.): Let K be an integer >1. Then we have
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{—e"“‘C(-‘i, K) if a=2 with integers a and ¢>1, (a, )=1
q q

0 if « is irrational (>0),
where we put

C(—Z—, K).——*Z'K(lﬂ)(l—(l/K))S(%, K)(K+1)'1g0(q)"1(%>_1/(m)

and



