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Introduction. Let/2 be an arbitrary set, let 27 be a a-field of subsets
of t (the measurable sets), and let g denote a nonnegative a-finite measure
on X. Let S(tg) be the space of all finite valued measurable functions on 9.
We identify f and g e S(/2) if they differ only on a set of/-measure zero.
With the usual ordering S(9) is an order complete vector lattice. A map-
ping F: R D(F)--S(2) is called a convex operator if D(F) the domain of
F is a convex set of the d-dimensional Euclidean space R and

r(2x+ (1 2)y)

_
2F(x) + (1 2)F(y)

holds for every x, y e D(F) and 2 e [0, 1]. Many kinds of ordered vector
spaces can be regarded as the subspaces of S(9), and hence this class of
convex operators covers many cases. A function f: R9-+RJ[+c} is
said to be a convex integrand if f(., t) is a convex unction for each t e 9.
We say that a convex integrand f is a representation of a convex operator
F if f(x, t) is measurable in t e 9 and f(x, )--F(x) holds for every x e D(F).
Our main result (Theorem 1) asserts that every convex operator F: R
D(F)-S(9) has at least a representation of F. In [3], one can see the
proof of this result in one dimensional case. In general case, the proof
is more complicated. In 2, we consider the relations between convex
operators and their representations. In 3, we generalize the Fenchel-
Moreau theorem by using representations, and give some conditions with
which a convex operator can be represented by a normal convex integrand.

1. Representation theorem.
Theorem 1. For every convex operator F: RD(F)--.S(), there ex-

ists at least a representation of F.
Outline of the proof. The proop is done by constructing a representa-

tion. The difficulty is to determine the value of f(x, t) when x belongs to
D(F) the boundary of D(F). For each x e 3D(F), let L be the largest
linear manifold such that some neighborhoods of x in L are contained by
3D(F). First we define the values of f(x, t) on D(F)2 by a countable
argument which is an analogy of the proof in one dimensional case. Next,
for each L with dimL d-- 1, we define f(y, t) on (L 3D(F)) t satisfy-
ing the followings.

(a) sup lim f(y+ 2(z--y), t)=f(y, t) for every y e L,
zGD(F) -0

(b) f(., t) is convex on L on L D(F) for every t e 9,
(c) f(y, .)--(F(y))(.) for every y e L D(F).

We can choose such values for f(y, t) if we use the fact that, for each y e L,


