By Naoto KOMUR0

Department of Mathematics, Hokkaido Educational University Asahikawa

(Communicated by Kôsaku Yosipa, M. J. A., March 13, 1989)

Introduction. Let Ω be an arbitrary set, let Σ be a σ -field of subsets of Ω (the measurable sets), and let μ denote a nonnegative σ -finite measure on Σ . Let $S(\Omega)$ be the space of all finite valued measurable functions on Ω . We identify f and $g \in S(\Omega)$ if they differ only on a set of μ -measure zero. With the usual ordering $S(\Omega)$ is an order complete vector lattice. A mapping $F: \mathbb{R}^d \supset D(F) \rightarrow S(\Omega)$ is called a convex operator if $D(F)$ the domain of F is a convex set of the d-dimensional Euclidean space \mathbb{R}^d and the *d*-dimensional Euclidean space
 $F(\lambda x + (1 - \lambda)y) \leq \lambda F(x) + (1 - \lambda)F(y)$

holds for every $x, y \in D(F)$ and $\lambda \in [0, 1]$. Many kinds of ordered vector spaces can be regarded as the subspaces of $S(\Omega)$, and hence this class of convex operators covers many cases. A function $f: \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{+\infty\}$ is said to be a *convex integrand* if $f(\cdot, t)$ is a convex function for each $t \in \Omega$. We say that a convex integrand f is a representation of a convex operator F if $f(x, t)$ is measurable in $t \in \Omega$ and $f(x, \cdot)=F(x)$ holds for every $x \in D(F)$. Our main result (Theorem 1) asserts that every convex operator $F: \mathbb{R}^d \supset$ $D(F) \rightarrow S(2)$ has at least a representation of F. In [3], one can see the proof of this result in one dimensional case. In general case, the proof is more complicated. In $\S 2$, we consider the relations between convex operators and their representations. In $\S 3$, we generalize the Fenchel-Moreau theorem by using representations, and give some conditions with which a convex operator can be represented by a normal convex integrand.

1. Representation theorem.

Theorem 1. For every convex operator $F: \mathbb{R}^d \supset D(F) \rightarrow S(\Omega)$, there exists at least a representation of F.

Outline of the proof. The proop is done by constructing a representation. The difficulty is to determine the value of $f(x, t)$ when x belongs to $\partial D(F)$ the boundary of $D(F)$. For each $x \in \partial D(F)$, let L_x be the largest linear manifold such that some neighborhoods of x in L_x are contained by $\partial D(F)$. First we define the values of $f(x, t)$ on $D^{\circ}(F) \times \Omega$ by a countable argument which is an analogy of the proof in one dimensional case. Next, for each L_x with dim $L_x = d-1$, we define $f(y, t)$ on $(L_x \cap \partial D(F)) \times \Omega$ satisfying the followings.

- (a) sup $\lim f(y + \lambda(z-y), t) \leq f(y, t)$ for every $y \in L_x$, $z\!\in\!\widehat{D\left(F\right)}\quad\lambda\!\to\!0$
- (b) $f(\cdot, t)$ is convex on L_x on $L_x \cap \partial D(F)$ for every $t \in \Omega$,
- (c) $f(y, \cdot) = (F(y))(\cdot)$ for every $y \in L_x \cap D(F)$.

We can choose such values for $f(y, t)$ if we use the fact that, for each $y \in L_x$,