52. A Note on Capitulation Problem for Number Fields. II

By Kenkichi IWASAWA Princeton University

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

In the present note, we shall again consider a capitulation problem for number fields which we discussed in our earlier paper [2]. Using some properties of Z_p -extensions of number fields, we shall prove the following:

Proposition. For each prime number $p \ge 2$, there exist infinitely many finite algebraic number fields k such that the p-class group of k capitulates in a proper subfield of Hilbert's p-class field over k.

We note that in the special case p=2, the proposition was proved in [2] by elementary argument.

1. Let *M* be any number field, finite or infinite over the rational field *Q*. Throughout the following, we fix a prime number $p \ge 2$ and denote by A(M) the *p*-primary component of the ideal class group of *M*; if *M* is finite over *Q*, this is the *p*-class group of *M*, denoted by $C_{M,p}$ in [2].

Lemma 1. Let k' be an unramified cyclic extension of degree p over a finite algebraic number field k. Then A(k) capitulates in k' if and only if the following a), b) hold:

a) there exists a prime ideal of k which is undecomposed and principal in k',

b) if the class of an ideal α' of k' belongs to A(k'), the norm $N_{k'/k}(\alpha')$ is a principal ideal in k'.

Proof. Let K and K' denote Hilbert's p-class fields over k and k' respectively: $k \subseteq k' \subseteq K \subseteq K'$. Let $t: \operatorname{Gal}(K/k) \to \operatorname{Gal}(K'/k')$ be the transfer map. Fix an element σ of $\operatorname{Gal}(K'/k)$ such that the restriction $\sigma \mid k'$ is a generator of $\operatorname{Gal}(k'/k)$. Then, for any τ in $\operatorname{Gal}(K'/k')$, we have

$$t(\tau \,|\, K) = \prod_{i=0}^{p-1} \sigma^i \tau \sigma^{-i}.$$

By Artin [1], A(k) capitulates in k' if and only if Im(t)=1. Hence the lemma follows from the fact that a) is equivalent with $t(\sigma|K)=1$ and b) with $t(\tau|K)=1$ for all τ in Gal(K'/k').

2. Let Q_{∞} denote the unique Z_p -extension over Q: Gal $(Q_{\infty}/Q) \simeq Z_p$, and let

$$\boldsymbol{Q} = \boldsymbol{Q}_0 \subset \boldsymbol{Q}_1 \subset \cdots \subset \boldsymbol{Q}_n \subset \cdots \subset \boldsymbol{Q}_\infty$$

be the sequence of intermediate fields for Q_{∞}/Q . For each $n \ge 0$, let \mathfrak{p}_n be the unique prime ideal of Q_n , dividing the rational prime p; \mathfrak{p}_n is a principal ideal in Q_n and $\mathfrak{p}_{n+1}^p = \mathfrak{p}_n$ for $n \ge 0$.

Let F be a real cyclic extension of degree p over Q such that

i) (p) is a prime ideal in F,