38. A Discrepancy Problem with Applications to Linear Recurrences. I

By Péter Kiss*),†) and Robert F. Tichy**)

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1989)

1. Introduction. Let $R = \{R_n\}_{n=0}^{\infty}$ be a second order linear recursive sequence of rational integers defined by

$$R_n = A \cdot R_{n-1} + B \cdot R_{n-2} \ (n > 1),$$

where the initial values R_0 , R_1 and A, B are fixed integers. We suppose that $AB \neq 0$, $R_0^2 + R_1^2 \neq 0$ and $D = A^2 + 4B \neq 0$. It is well-known that the terms of R can be expressed as

$$(1) R_n = a \cdot \alpha^n - b \cdot \beta^n$$

for any $n \ge 0$, where α and β are the roots of the polynomial $x^2 - Ax - B$ and

$$a = \frac{R_1 - R_0 \beta}{\alpha - \beta}, \qquad b = \frac{R_1 - R_0 \alpha}{\alpha - \beta}.$$

Throughout this paper, we assume $|\alpha| \ge |\beta|$ and that the sequence is non-degenerate, i.e. α/β is not a root of unity. We may also suppose that $R_n \ne 0$ for n > 0 since in [2] it was proved that a non-degenerate sequence R has at most one zero term and after a movement of indices this condition will be fulfilled.

If $D=A^2+4B>0$, i.e. if α and β are real numbers, then $|\alpha|>|\beta|$ and $(\beta/\alpha)^n\to 0$ as $n\to \infty$; hence we obtain by (1)

(2)
$$\lim (R_{n+1}/R_n) = \alpha.$$

The following interesting problem arises: what is the quality of approximation of α by rationals of the form R_{n+1}/R_n ? In the case D>0 we know that there are constants q>0 and k_0 $(0< k_0 \le 2)$, depending on the parameters of the sequence R, such that

$$\left|\alpha - \frac{R_{n+1}}{R_n}\right| < q \cdot R_n^{-k}$$

for infinitely many n and for any $k \le k_0$, but (3) holds only for finitely many n if $k > k_0$ (see [5]). For the sequence R with initial values $R_0 = 0$, $R_1 = 1$ it was proved in [3] that $k_0 = 2$ if and only if |B| = 1; furthermore

$$\left| \alpha - \frac{R_{n+1}}{R_n} \right| < \frac{1}{\sqrt{D} \cdot R_n^2}$$

for infinitely many n, and these rational numbers R_{n+1}/R_n give the best

^{†)} Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.

^{*} Teachers' Training College, Department of Mathematics, Eger, Hungary.

^{**} Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.