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99. Tables of Ideal Class Groups of Real Quadratic Fields
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§1. Introduction. A table of ideal class groups of imaginary quad-
ratic fields Q(y/—m) was given in [5] for m <100, 000. In this note we
shall give corresponding tables for ideal class groups in narrow sense and
in wide sense for real quadratic fields Q(y/m) for m <100, 000. As in [5],
we use the expression (a, b, - - -, ¢) to denote the type of finite abelian group
which is the direct product of cyclic groups of order a, b, ---,¢, aZCbZC
-..CcZ. The ideal class groups in wide and narrow sense, the class num-
bers in wide and narrow sense, the fundamental unit, the 2-ranks of the
ideal class groups in wide and narrow sense of Q(y/m) and the number of
rational primes ramified in Q(,/m) are denoted by C(m), C’'(m), h(m), h’/(m),
e(m), r(m), '(m) and t(m), (sometimes simply by C, C’, h, I/, ¢, 7, 7/, t) re-
spectively. It is well known that #’=% or 2k accoring as Ne=—1or +1
and "=t—1. We recall that a table of 2(m) and Ne(m) is given in [4] for
m <100, 000. The method of our calculation is based on [2] Chapter 5. It
was done by micro VAX-II and the computer time for making these tables
was about 40 hours.

§2. Ideal class groups in narrow sense. Our Table I gives the types
(a, b, - -, ¢) of C'(m) for all m <100, 000 except in the following two cases:

(1) C’(m) is cyclic.

(2) C’(m) is of the type 2o/, 2, - --,2) and t>2.

Thus when m is not found in Table I, and ¢=1 or 2, then C’(m) is
cyclic, and when ¢ >2 then C’(m) is of the type (2¢/, 2, - - -, 2) with a’=h//2:"",

§3. Ideal class groups in wide sense. If Ne(m)= —1, it is well-known
that C’(m) and C(m) are of the same type. We have furthermore the fol-
lowing theorem.

Theorem. Let R(m) be the set of rational primes ramified in Q(y/m)
(i.e. the set of prime divisors of the discriminant of Q(y/m)).

(1) If R(m) contains a prime =3 (mod. 4), then

r(m)=r'(m)—1=t—2.

(2) Otherwise r(m)=r(m)=t—1.

The proof of this theorem is implicitly contained in [1] or in [38], but
this explicit formulation was communicated to us by Prof. Iwasawa. We
add here a short proof for convenience.

Proof. In case (1), the norm of the fundamental unit is 1 and there is
no number 6 € Q(y/m) satisfying N@@)=—1. Sor=t—2 ([3] p. 257).

In case (2), we can conclude from calculation of the Hilbert Symbol that



