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Let G be a connected, reductive linear algebraic group defined over a
finite field F, with ¢ elements of characteristic p and F' the corresponding
Frobenius endomorphism of G. Let G¥ denote the group of F-fixed points
of G. In [2] R. Gow initiated, in order to determine the Schur indices
of irreducible characters of some finite groups of type G¥, to study
rationality-properties of the characters of G” induced by the linear char-
acters of a Sylow p-subgroup of G¥ (also cf. A. Helversen-Passoto [4] and
Gow [3]). In [5] we have obtained some general results for a general
GT (p#2). The purpose of this paper is to state some more detailed
results when G is a simple algebraic group.

Let G be reductive. Let B and T be respectively an F-stable Borel
subgroup of G with the unipotent radical U and an F-stable maximal torus
of B. Let R be the set of roots of G with respect to T, R* the set of posi-
tive roots determined by B and D the set of corresponding simple roots.
For each a e R, let U, denote the corresponding root subgroup of G. Let
U, be the subgroup of U generated by the U,,« ¢ R*—D. There is a per-
mutation p on D determined by FU,=U,, for a € D. Let I be the set of
orbits of p on D. For each iel, put U;=[][.c; U,. Then we have U/U,
=[l:e: Us; this decomposition is F-stable and we have (U/U,)*=U"|U%
=T[lic; UF. It is known that U* is a Sylow p-subgroup of G* and that if
p is a good prime for G then U% is equal to the commutator subgroup of
U*. Let A be the set of characters of U” such that 2| UL =1 and let 4, be
the set of 2in A such that 2|U?=1 for all iel. Then it is known that,
for any 1¢e 4, I';=Ind$% (1) is multiplicity-free ([1], Theorem 8.1.3; also
see [5], Lemma 1). For an irreducible character X of a finite group and a
field E of characteristic zero, let mz(X) denote the Schur index of X with
respect to E. We have seen in [5] that if X is an irreducible character of
G* such that (X, 2" >4»=1 for some 2¢ 4 or that, when p is a good prime
for G, pyx(1), then we have m (X)<2, where Q is the field of rational
numbers.

Assume now that G is simple. Let X=Hom (T, G,) be the (additive)
module of rational characters of T. Let P(R) and Q(R)=(R), be respec-
tively the weight-lattice and the root-lattice of R, where Z is the ring of
rational integers. Then we have P(R)D XD Q(R); and P(R)/Q(R) is a finite
group. Putd=(X:Q(R)). For an integer =, let ord, n denote the exponent



