23. On Traces of Hecke Operators on the Spaces of Cusp Forms of Half-integral Weight

By Masaru UEDA

Department of Mathematics, Faculty of Science, Kyoto University (Communicated by Shokichi Iyanaga, M. J. A., March 12, 1987)

The space of cusp forms of half-integral weight, besides the space of those of integral weight, and Hecke operators on these spaces are well-known objects of arithmetical study of automorphic forms. After S. Niwa [2] had given some explicit relations between traces of these operators, W. Kohnen [1] gave further relation of similar type. In this paper, we shall give more general relations including these results. Details will appear in [3].

Preliminaries.

(a) General notations. Let k be a positive integer. If $z \in C$ and $x \in C$, we put $z^x = \exp(x \cdot \log(z))$ with $\log(z) = \log(|z|) + \sqrt{-1}$ arg (z), arg (z) being determined by $-\pi < \arg(z) \le \pi$. For $z \in C$, we put

$$e(z) = \exp(2\pi\sqrt{-1}z)$$
.

Let \mathfrak{F} be the complex upper half plane. For a complex-valued function f(z) on \mathfrak{F} , $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbf{R}), \gamma = \begin{pmatrix} u & v \\ w & x \end{pmatrix} \in \Gamma_0(4)$ and $z \in \mathfrak{F}$, we define functions $J(\alpha,z)$, $j(\gamma,z)$ and $f|[\alpha]_k(z)$ on \mathfrak{F} by: $J(\alpha,z) = cz + d$, $j(\gamma,z) = \left(\frac{-1}{x}\right)^{-1/2} \times \left(\frac{w}{x}\right)(wz+x)^{1/2}$ and $f|[\alpha]_k(z) = (\det \alpha)^{k/2}J(\alpha,z)^{-k}f(\alpha z)$.

(b) Modular forms of integral weight. Let N be a positive integer. By S(2k, N), we denote the space of all holomorphic cusp forms of weight 2k with the trivial character on the group $\Gamma = \Gamma_0(N)$.

Let $\alpha \in GL_2^+(R)$. If Γ and $\alpha^{-1}\Gamma\alpha$ are commensurable, we define a linear operator $[\Gamma\alpha\Gamma]_{2k}$ on S(2k,N) by:

$$f|[\Gamma \alpha \Gamma]_{2k} = (\det \alpha)^{k-1} \sum_{\alpha_i} f|[\alpha_i]_{2k},$$

where α_i runs over a system of representatives for $\Gamma \setminus \Gamma \alpha \Gamma$.

For a natural number n with (n, N) = 1, we put

$$T_{2k,N}(n) = \sum_{a d=n} \left[\Gamma \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \Gamma \right]_{2k}$$

where the sum is extended over all pairs of integers (a,d) such that a,d>0, a|d and ad=n. Moreover, let L_0 be a positive divisor of N such that $(L_0,N/L_0)=1$ and that $L_0\neq 1$. Take any element $\gamma(L_0)\in SL_2(Z)$ which satisfies the conditions: