On a Class of Partially Hypoelliptic Microdifferential Equations

By Nobuyuki Tose and Moto-o Uchida Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1987)

§ 1. Introduction. We study a class of microdifferential equations with double characteristics which are non-hyperbolic. Explicitly, let M be a real analytic manifold with a complexification X and let P be a microdifferential operator defined in a neighborhood of $\rho_0 \in T_M^*X$ $(=T_M^*X \setminus M)$ whose principal symbol is written as

(1)
$$p = \sigma(P) = p_1 + \sqrt{-1} q_1^{2m} \cdot p_2$$

in a neighborhood of ρ_0 . Here p_1 , p_2 and q_1 are homogeneous holomorphic functions of order 1, 1 and 0 respectively, which are defined in a neighborhood of ρ_0 . We assume that p_1 , p_2 and q_1 satisfy the following conditions (2)-(6).

- (2) p_1 , p_2 and q_1 are real valued on T_M^*X .
- dp_1 , dp_2 and ω (the canonical 1-form of T_M^*X) are linearly independent (3)
- $\{p_1, p_2\} = 0$ if $p_1 = p_2 = 0$ where $\{\cdot, \cdot\}$ denotes Poisson bracket on T_M^*X . (4)
- (5) $\{p_1, q_1\} \neq 0$ at ρ_0 .
- (6) $p_1(\rho_0) = p_2(\rho_0) = q_1(\rho_0) = 0.$

We give a theorem concerning the propagation of singularities of solutions to Pu=0 on the regular involutory submanifold

$$\Sigma = \{ \rho \in \dot{T}_{M}^{*}X ; p_{1}(\rho) = p_{2}(\rho) = 0 \}.$$

Precisely, we will show supp (u) is a union of bicharacteristic leaves of Σ for any $u \in \mathcal{C}_{M,\rho_0}$ satisfying Pu=0. Interesting is the fact that P is hypoelliptic in the framework of 2-microlocalization.

 $\S 2$. Preliminary. Let M be a real analytic manifold with a complexification X and Σ be a regular involutory submanifold of $\dot{T}_{\underline{M}}^*X$. a complexification Λ of Σ in T^*X . Then $\tilde{\Sigma}$ denotes the union of all bicharacteristic leaves of Λ eminated from Σ . On $T_z^*\tilde{\Sigma}$, M. Kashiwara constructed the sheaf \mathcal{C}^2_{Σ} of 2-microfunctions along Σ . (See Kashiwara-Laurent [2] for details about C_{Σ}^2 .) We can study the properties of microfunctions on Σ precisely by \mathcal{C}_{Σ}^2 . Actually, we have the following exact sequences (7) and (8).

$$(7) \qquad 0 \longrightarrow \mathcal{C}_{\tilde{\Sigma}}|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2} \longrightarrow \dot{\pi}_{*}(\mathcal{C}_{\Sigma}^{2}|_{T_{\Sigma}^{*}\tilde{\Sigma}\backslash\Sigma}) \longrightarrow 0. \qquad (\dot{\pi}: T_{\Sigma}^{*}\tilde{\Sigma}\backslash\Sigma \longrightarrow \Sigma.)$$

$$(8) \qquad 0 \longrightarrow \mathcal{C}_{M}|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2}.$$

Here $\mathcal{C}_{\tilde{\Sigma}}$ is the sheaf of microfunctions along $\tilde{\Sigma}$ and $\mathcal{B}_{\Sigma}^2 = \mathcal{C}_{\Sigma}^2|_{\Sigma}$.

Moreover there exists the canonical spectral map

$$(9) Sp_{\Sigma}^{2}: \pi^{-1}\mathcal{B}_{\Sigma}^{2} \longrightarrow \mathcal{C}_{\Sigma}^{2} (\pi: T_{\Sigma}^{*}\tilde{\Sigma} \longrightarrow \Sigma),$$