95. Expansive Homeomorphisms of Compact Surfaces are Pseudo-Anosov

By Koichi HIRAIDE Kagoshima National College of Technology (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1987)

Let (X, d) be a compact metric space and $f: X \to X$ be a homeomorphism. We recall that f is *expansive* (with expansive constant c>0) if to each pair (x, y) of distinct points in X there is an integer $n \in Z$ such that $d(f^n(x), f^n(y)) > c$. All the examples of expansive homeomorphisms on compact surfaces known so far are pseudo-Anosov diffeomorphisms which are introduced by W. Thurston [4] (cf. [1], [2]). The problem of whether new expansive homeomorphisms exist on compact surfaces is important in topological dynamics. The purpose of this paper is to announce the following result.

Theorem 1. Every expansive homeomorphism of a compact surface is pseudo-Anosov.

If this theorem was established, then by using Euler-Poincaré's formula and Kneser's Theorem, we can give a partial answer for the problem of existence of expansive homeomorphisms as follows (cf. [3], [5]).

Theorem 2. There are no expansive homeomorphisms on the 2-sphere, the projective plane and the Klein bottle.

A homeomorphism f of a compact surface M is *pseudo-Anosov* if there is a pair (\mathcal{F}^s, μ^s) and (\mathcal{F}^u, μ^u) of transverse measured foliations with (the same) singularities such that $f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s)$ and $f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda\mu^u)$ where $\lambda > 1$. This means that f preserves the two singular foliations \mathcal{F}^s and \mathcal{F}^u ; it contracts the leaves of \mathcal{F}^s by λ^{-1} and it expands the leaves of \mathcal{F}^u by λ .

Let $x \in X$ and define the stable and unstable sets $W^{s}(x)$, $W^{u}(x)$ as

 $W^{s}(x) = \{ y \in X : d(f^{n}(x), f^{n}(y)) \rightarrow 0 \text{ as } n \rightarrow \infty \},\$ $W^{u}(x) = \{ y \in X : d(f^{n}(x), f^{n}(y)) \rightarrow 0 \text{ as } n \rightarrow -\infty \}$

and put

 $\mathcal{P}^{\sigma}(X, f) = \{ W^{\sigma}(x) : x \in X \} \qquad (\sigma = s, u).$

Then $\mathcal{P}^{\sigma}(X, f)$ is a decomposition of X and preserved under f. If X is a compact surface and f is pseudo-Anosov, then it is easily checked that $\mathcal{P}^{\sigma} = \mathcal{P}^{\sigma}(X, f)$ ($\sigma = s, u$).

In order to obtain Theorem 1 we must prove the following

Proposition A. Let $f: M \to M$ be an expansive homeomorphism. Then the families $\mathcal{P}^{\sigma}(M, f)$ ($\sigma = s, u$) have the following properties;

- (1) $\mathcal{P}^{\sigma}(M, f)$ is a singular foliation on M,
- (2) every leaf $W^{\sigma}(x) \in \mathcal{P}^{\sigma}(M, f)$ is homeomorphic to $L_{p} = \{z \in C : \operatorname{Im}(z^{p/2})\}$