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We consider the Cauchy problem with characteristic initial surface
assuming the coefficients to be analytic. Though the uniqueness does not
hold in general for C~ or 9’ solutions, we can expect it if we impose some
convexity condition. We establish such a uniqueness theorem at a doubly
characteristic point. The result makes us be able to understand the
Tréves’ example [6] in a general structure.

1. Result. Let U be a neighborhood of the origin in R"*!, P(x;d)
=" a<m B(2)3%, 2= (2, - - -, 2,), and a,(x) be analytic functions in U. We
denote the principal symbol of P by p,(x, > &dx,). Let S be a hypersur-
face defined by ¢(x) =0, where ¢ is a real-valued analytic function satisfying
¢(0)=0 and dp+0 in U.

We assume
(A) P2, dp)=0 in U, and dp,(x, dp)=0 at x=0.

Under this assumption, we define

G=( 0P, dg) (), 1=0 n)

ox, j=0-n
Let 4, - - -, 2, be the eigen values of this matrix. Besides, we put
p={Puci@, dp)+ 3 D0, delite)
Note. 1) These n+2 values 4, - - -, 4,, ¢ are invariant with respect to

the change of coordinates.

2) The matrix G has at least one zero eigen value.

3) Let F be the fundamental matrix of p, at its critical point
(0,dp(0)). Then, under the assumption (A), the eigen values of F are
equal to {£21,, - -+, +2,}, where 2,’s are those of G.

Now let k& be the number of non-zero eigen values of G. We put the
following four conditions:

C.1 k>1.
C.2 Let 4 be the convex hull, on the complex number plane, of non-zero
eigen values of G, then 0 ¢ 4.

C.3 pe {Z liﬁi;ﬁeN”“}.
=0
C.4 There are n real-valued analytic functions ¢,(®), i=1, - --,n, such

that do, do,, - - -, dp, are linearly independent and that



