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The purpose of this note is to announce our recent results on quater-
nionic Kihler manifolds (see Salamon [5] for definition of quaternionic
Kihler manifolds). Let M be a 4n-dimensional connected quaternionic
Kihler manifold with the corresponding twistor space »:Z—M (cf. [5)).
Furthermore, let H be the skew field of quaternions. Then the Sp(n)-Sp(1)-
module A2H™" is a direct sum N/®N/®L, of its irreducible submodules N,
N7, L,, where N} (resp. L,) is the submodule fixed by Sp(n) (resp. Sp(1)) and
for n=1, we have N} ={0}. Hence, the vector bundle A\*T*M is written
as a direct sum A;PA/®B, of its holonomy-invariant subbundles in such a
way that A;, A}, B, correspond to N}, N/, L,, respectively. Now, let V be
a vector bundle over M.

Definition 1. A connection for V is called an Aj-connection (resp. B,
connection) if the corresponding curvature is an End (V)-valued Aj-form
(resp. B,-form).

First, we have:

Theorem A (cf.[3]). All Ai-connections and also all B,-connections are
Yang-Mills connections.

Let p:Sp(n)—>GL@2n; C) be the standard representation of Sp(n).
Recall that Sp(1)={h € H||h|=1}. Furthermore, let K’ (resp. K) be the
C-vector space C** (resp. C* (=H)) endowed with the Sp(n)-action (resp.
Sp(1)-action) defined by

Spm) X C** 3 (g, f)—>p(9)- f € C*,

(resp. Sp(V)X H> (u, )—>f-u'e H).
Then the complexification H*® 5 C of the Sp(n) - Sp(1)-module H" is naturally
identified with K'®;K”. Let r be an integer with r=2. Since the sub-
module A\"'K'®,S’K” of the Sp(n)-Sp(l)-module A" (K'QK") (=" (H"
®zC)) is just N? (=N,RQ;C) for some suitable Sp(n)-Sp(1)-module N,, we
have a natural decomposition A"H"=N,®L, for some complementary
Sp(n)-Sp(1)-module L, of N, in A'H" (cf. [8]). Therefore, the vector
bundle A’T*M is expressed as a direct sum A,®B, of subbundles A4,.B,
corresponding to N,.L,. respectively. We denote by =" : A\"T*M (=A,&B,)
—A, the natural projection to the first factor. Then from a theorem of
Salamon [6], one easily obtains the following :

Theorem B (cf. [8]). Assume that V is a B,-connection on V. Then
the following is an elliptic complex :



