38. Some Remarks on C-semigroups and Integrated Semigroups

By Naoki TANAKA and Isao MIYADERA Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1987)

1. Introduction. Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. Let C be an injective operator in B(X) and the range R(C) be dense in X. According to Davies and Pang [3], a family $\{S(t); t \ge 0\}$ in B(X) is called C-semigroup, if

(1.1) S(t+s)C = S(t)S(s) for $t, s \ge 0$, and S(0) = C,

(1.2) S(·)x: $[0, \infty) \rightarrow X$ is continuous for $x \in X$,

(1.3) there are $M \ge 0$ and $a \in \mathbb{R} \equiv (-\infty, \infty)$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

We define an operator G by $Gx = \lim_{t\to 0^+} (C^{-1}S(t)x - x)/t$ for $x \in D(G) \equiv \{x \in R(C); \lim_{t\to 0^+} (C^{-1}S(t)x - x)/t \text{ exists}\}$. It is known that G is densely defined and closable, $\lambda - \overline{G}$ is injective for $\lambda > a$ and

(1.4)
$$(\lambda - \overline{G}) \int_0^\infty e^{-\lambda t} S(t) x \, dt = Cx \text{ for } x \in X \text{ and } \lambda > a.$$

(See [3], [4].) The closure \overline{G} is called the *C*-*c*.*i*.*g*. of {*S*(*t*); $t \ge 0$ }.

Let n be a positive integer. A family $\{U(t); t \ge 0\}$ in B(X) is called ntimes integrated semigroup (see [2]), if

(1.5) $U(\cdot)x: [0, \infty) \rightarrow X$ is continuous for $x \in X$,

(1.6)
$$U(t)U(s)x = \frac{1}{(n-1)!} \left(\int_{t}^{s+t} (s+t-r)^{n-1} U(r) x dr - \int_{0}^{s} (s+t-r)^{n-1} U(r) x dr \right)$$

for $x \in X$ and $s, t \ge 0$, and U(0) = 0,

(1.7) U(t)x=0 for all t>0 implies x=0,

(1.8) there are $M \ge 0$ and $\omega \in \mathbf{R}$ such that $||U(t)|| \le Me^{\omega t}$ for $t \ge 0$.

For convenience we call a C_0 -semigroup also 0-times integrated semigroup.

It is known [2] that if $\{U(t); t \ge 0\}$ is an *n*-times integrated semigroup, then there exists a unique closed linear operator A such that $(\omega, \infty) \subset \rho(A)$ (the resolvent set of A) and

(1.9)
$$R(\lambda; A)x(\equiv (\lambda - A)^{-1}x) = \int_0^\infty \lambda^n e^{-\lambda t} U(t)x \, dt \text{ for } x \in X \text{ and } \lambda > \omega.$$

The operator A is called the generator of $\{U(t); t \ge 0\}$.

The purpose of this paper is to prove the following theorems.

Theorem 1. Let A be a densely defined closed linear operator in X with $\rho(A) \neq \emptyset$. Let $c \in \rho(A)$ and $n \ge 0$ be an integer. The following (i)–(iii) are equivalent:

- (i) A is the generator of an n-times integrated semigroup $\{U(t); t \ge 0\}$.
- (ii) A is the C-c.i.g. of a C-semigroup $\{S(t); t \ge 0\}$ with $C = R(c; A)^n$.