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§1. Introduction. Let d be a positive square-free integer. We
denote by w(d) the algebraic integer v/ d (resp. (1/2)(1++/d)) in the real
quadratic field Qv d) if d=2 or 3 (mod 4) (resp. d=1 (mod 4)), and by
A4(d) and h(d) the discriminant and the class number of Q(+v/ d ), respectively.

The positive real quadratic irrational o(d) can be expanded into the periodic
infinite continued fraction :

a’(d)z[ao: d’l’ Sty dk]:‘[aw Qpy = v vy gy Qyy = vy Oy = - ]
=qa,+ l+l+l+ e,
a, a4, Q
where a,, a,, - -- are positive integers. We call k the period of w(d) or of

Q(+v d) and denote it by k(d).

The purpose of this note is to give a characterization of real quadratic
fields Q(v d) with h(d)=k(d)=1, in analogy to Rabinovitch’s theorem ([5],
[6]) characterizing imaginary quadratic fields whose class number is 1.

§2. Preliminaries. We recall some facts about integral indefinite
binary quadratic forms (cf. [2], Ch. VI). Let Q(4(d)) denote the set of
integral quadratic forms aX’+bXY +¢Y*? with the discriminant 4(d)=>b*
—4ae. Two forms aX*+bXY +¢Y? and o/ X*+ b0’ XY +¢'Y? in Q(4(d)) are
said to be (properly) equivalent if o/ (X" +0'X'Y' +¢'(Y') =aX?*+bXY 4 cY?,
X, Y)=(X, Y)M, for some M e SL,(Z). We denote by Q,(d(d)) the quo-
tient of Q(4(d)) by this equivalence relation. There is a natural bijection
between Q,(4(d)) and the ideal class group of Q(v d) in the narrow sense.
We shall denote its order by h.(d).

A quadratic form aX*+bXY +¢cY* in Q(4(d)) is said to be reduced if
0<v/4(d)—b<2a|<+/4(d)+b. Using the continued fraction o(d) = [a,,
Gy - -+, Aroy], we define reduced forms, in Q(4(d)), &,=(—1)'4,X*+ B, XY
+(—1)*A,,,Y?% 1=0,1, .- -, where A, and B, are inductively defined by
Ay=1, B,=Tr(a,—w(d), A, =—Nm(a,—ao(d), B +B;=2a:,4A,,, and
(Bi+VAd)/ A1) =[as.1, Cirs, @iyyy ---1. By the periodicity of w(d), we
get Dpqy =9, or Dy oy =D, according as k(d) is even or odd. Moreover any
reduced form which is equivalent to @, coincides with @, for some 1.

§3. Finiteness of the number of real quadratic fields with given class
number and period. Let w(d)=la, d,, - - -, @] be as above ; then we have
the following :

Lemma 1. (1) a;=0q-; for 0<i<k(d) and a4 =Tr (¢,—w(d)).



