29. A Characterization of Certain Real Quadratic Fields

By Ryuji SASAKI

Department of Mathematics, College of Science and Technology, Nihon University

(Communicated by Shokichi IYANAGA, M.J.A., March 12, 1986)

 $§ 1.$ Introduction. Let d be a positive square-free integer. We denote by $\omega(d)$ the algebraic integer \sqrt{d} (resp. $(1/2)(1+\sqrt{d})$) in the real quadratic field $Q(\sqrt{d})$ if $d\equiv 2$ or 3 (mod 4) (resp. $d\equiv 1 \pmod{4}$), and by $\Delta(d)$ and $h(d)$ the discriminant and the class number of $\mathbf{Q}(\sqrt{d})$, respectively. The positive real quadratic irrational $\omega(d)$ can be expanded into the periodic infinite continued fraction:

$$
\omega(d) = [a_0, a_1, \cdots, a_k] = [a_0, a_1, \cdots, a_k, a_1, \cdots, a_k, \cdots]
$$

= $a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \cdots$,

where a_0, a_1, \cdots are positive integers. We call k the period of $\omega(d)$ or of $Q(\sqrt{d})$ and denote it by $k(d)$.

The purpose of this note is to give a characterization of real quadratic fields $Q(\sqrt{d})$ with $h(d)=k(d)=1$, in analogy to Rabinovitch's theorem ([5], [6]) characterizing imaginary quadratic fields whose class number is 1.

2. Preliminaries. We recall some facts about integral indefinite binary quadratic forms (cf. [2], Ch. VI). Let $Q(\mathcal{A}(d))$ denote the set of integral quadratic forms $aX^2 + bXY + cY^2$ with the discriminant $\Delta(d)=b^2$ $-4ac$. Two forms $aX^2 + bXY + cY^2$ and $a'X^2 + b'XY + c'Y^2$ in $Q(\mathcal{A}(d))$ are said to be (properly) equivalent if $a'(X')^2 + b'X'Y' + c'(Y')^2 = aX^2 + bXY + cY^2$, $(X', Y') = (X, Y)M$, for some $M \in SL_2(Z)$. We denote by $Q_+(A(d))$ the quotient of $Q(\Delta(d))$ by this equivalence relation. There is a natural bijection between $Q_+(d(d))$ and the ideal class group of $Q(\sqrt{d})$ in the narrow sense. We shall denote its order by $h_+(d)$.

A quadratic form $aX^2 + bXY + cY^2$ in $Q(\mathcal{A}(d))$ is said to be *reduced* if $0<\sqrt{\Delta(d)}-b<2|a|<\sqrt{\Delta(d)}+b$. Using the continued fraction $\omega(d)=[a_0,$ $d_1,\dots, d_{k(d)}$, we define reduced forms, in $Q(\mathcal{A}(d)), \Phi_i = (-1)^i A_i X^2 + B_i XY$ $+(-1)^{i+1}A_{i+1}Y^{i}, i=0, 1, \cdots$, where A_{i} and B_{i} are inductively defined by $A_0=1$, $B_0=\text{Tr}(a_0-\omega(d))$, $A_1=-\text{Nm}(a_0-\omega(d))$, $B_{i+1}+B_i=2a_{i+1}A_{i+1}$ and $(B_i+\sqrt{A(d)})/(2A_{i+1})=[a_{i+1}, a_{i+2}, a_{i+3}, \cdots]$. By the periodicity of $\omega(d)$, we get $\Phi_{k(d)} = \Phi_0$ or $\Phi_{2k(d)} = \Phi_0$ according as $k(d)$ is even or odd. Moreover any reduced form which is equivalent to Φ_0 coincides with Φ_i for some *i*.

§3. Finiteness of the number of real quadratic fields with given class number and period. Let $\omega(d)=[a_0, a_1, \dots, a_{k(d)}]$ be as above; then we have the following:

Lemma 1. (1) $a_i = a_{k(d)-i}$ for $0 \le i \le k(d)$ and $a_{k(d)} = \text{Tr} (a_0 - \omega(d)).$