94

28. On Persson's Theorem Concerning p-Nuclear Operators

By Yasuji TAKAHASHI*) and Yoshiaki OKAZAKI**) (Communicated by Kôsaku Yosida, M. J. A., March 12, 1986)

1. Let E, F be Banach spaces, p a real number such that $1 \le p < \infty$

and 1/p+1/p'=1. We denote by $N_p(E, F)$ the set of all linear operators T from E into F which can be factorized as follows:

$$E \xrightarrow{V} l^{\infty} \xrightarrow{D} l^{p} \xrightarrow{W} F$$

where V, W are bounded linear operators and $D=(\alpha_n)$ is a diagonal operator with $\sum_n |\alpha_n|^p < \infty$. The elements in $N_p(E,F)$ will be called p-nuclear operators or operators of type N_p . We also denote by $N^p(E,F)$ the set of all linear operators T from E into F which can be factorized as follows:

$$(**) E \xrightarrow{V} l^{p'} \xrightarrow{D} l^1 \xrightarrow{W} F$$

where V,W and D are of the same kind as above. The elements in $N^p(E,F)$ will be called operators of type N^p . For p=1 the two classes $N_p(E,F)$ and $N^p(E,F)$ are equal and coincide with the space of all nuclear operators from E into F. For $1 in general, neither <math>N_p(E,F) \subset N^p(E,F)$ nor the converse inclusion hold. In [3], Persson investigated some relation of these operators with p-integral and p-decomposable operators, and then proved that the inclusions $N^p(E,L^p) \subset N_p(E,L^p)$ and $N_p(L^{p'},E) \subset N^p(L^{p'},E)$ always hold for all Banach spaces E.

The purpose of this paper is to characterize Banach spaces E for which one of the following conditions holds:

- (1) For each Banach space F, the inclusion $N^p(F, E) \subset N_p(F, E)$ holds.
- (2) For each Banach space F, the inclusion $N_p(E,F) \subset N^p(E,F)$ holds. We note that our results extend the works of Persson [3] and Kwapien [1]. As a consequence, we obtain that if E is of $S_{p'}$ type and F is of Q_p type in the sense of Kwapien [1], then the identity $N^p(E,F) = N_p(E,F)$ holds.
- 2. Main results. First we establish the relationship between p-nuclear operators and operators of type N^p . Throughout the paper, E denotes a Banach space with the dual E' and let p be $1 \le p < \infty$. In the following, $\{e_n\}$ denotes the sequence of canonical basis of l^p , where 1/p + 1/p' = 1.

Theorem 1. Let T be a bounded linear operator from E into a Banach space F. Then we have the following.

- (1) If T is p-nuclear, then T' (dual of T) is of type N^p .
- (2) If T is of type N^p , then T' is p-nuclear.

^{*)} Department of Mathematics, Yamaguchi University.

^{**} Department of Mathematics, Kyushu University.