20. On Automorphism Groups of Compact Riemann Surfaces of Genus 4

By Izumi KURIBAYASHI*) and Akikazu KURIBAYASHI**)

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1986)

Let X be a compact Riemann surface of genus $g \ge 2$. A group AG of automorphisms of X (i.e., a subgroup of the group Aut(X) of all automorphisms of X) can be represented as a subgroup R(X, AG) of GL(g, C)as elements of AG operate in the g-dimensional module of abelian differentials on X. The purpose of this paper is to determine in case g=4 all subgroups of GL(g, C) which are conjugate to some R(X, AG) (for some X and some AG). (For the case g=2, 3 the same problem was already solved; [2] for the case g=2; the result for g=3 is not yet published.)

A more detailed account will be published elsewhere.

§ 1. Preliminaries. Let G be a finite subgroup of GL(g, C), and H a non-trivial cyclic subgroup of G. Define two sets CY(G) and CY(G; H) by

 $CY(G) := \{K; K \text{ is a non-trivial cyclic subgroup of } G\},\$

 $CY(G; H) := \{K \in CY(G); K \text{ contains strictly a subgroup } H \text{ of } G\}.$ We say that G satisfies the condition (F) if for every element A of G, $r(A) := 2 - (\operatorname{Tr}(A) + \operatorname{Tr}(A^{-1}))$ is a non-negative integer. Further we define as follows :

(1) $r(H) := 2 - (\text{Tr}(A) + \text{Tr}(A^{-1})), \text{ where } H = \langle A \rangle.$

(2) $r_*(H) := r(H) - \sum_{K} r_*(K)$ (defined by descending condition)

where K ranges over the set CY(G; H).

(3) $l(H) := r_*(H) / [N_G(H) : H], l(I) := 0$, where I is the trivial group.

$$(4) g_0(G) := (1/\#G) \sum_{A \in G} \operatorname{Tr} (A)$$

Then we have the following relation [2]:

(RH) $2g-2=\#G(2g_0-2)+\#G\sum_i l(H_i)(1-(1/n_i)).$

Here $\{H_i\}$ is a complete set of representatives of *G*-conjugacy classes of CY(G) and $n_i := \#H_i$. We put further #G = n.

We say that a finite subgroup G of GL(g, C) satisfies (RH_+) if G satisfies (F) and if l(H) is a non-negative integer for any H of CY(G). Then put $\mathrm{RH}(G) := [g_0, n; n_1, \dots, n_i, \dots, n_s, \dots, n_s]$, where n_i appears $l(H_i)$ -times $(1 \le i \le s)$.

We say that a finite subgroup G of GL(g, C) satisfies the condition (E) if the following conditions are satisfied :

^{*)} Institute of Mathematics, University of Tsukuba, Ibaraki 305.

^{**&#}x27; Department of Mathematics, Faculty of Science and Engineering, Chuo University, Tokyo 112.