19. On the Construction of Pure Number Fields of Odd Degrees with Large 2-class Groups*)

By Shin NAKANO

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1986)

Introduction. In his previous paper [3], the author constructed infinitely many pure number fields of any given odd degree n(>1) whose ideal class groups have 2-rank at least $2\Delta_n$, where Δ_n is the number of divisors of n which are smaller than n, that is $\Delta_n = \prod_{i=1}^r (e_i+1)-1$ if $n=\prod_{i=1}^r p_i^{e_i}$ is the decomposition of n into prime factors. The aim of the present paper is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist infinitely many pure number fields of degree n whose ideal class groups have 2-rank at least $3\Delta_n$.

In order to prove this, we make use of the symmetric polynomial in X, Y, Z;

$$\begin{split} D(X, Y, Z) &= \frac{X^2 + Y^2 + Z^2}{4} - \frac{XY + YZ + ZX}{2} \\ &= \left(\frac{-X + Y + Z}{2}\right)^2 - YZ = \left(\frac{X - Y + Z}{2}\right)^2 - ZX \\ &= \left(\frac{X + Y - Z}{2}\right)^2 - XY. \end{split}$$

Putting $(X, Y, Z) = (x^n, y^n, z^n)$ and A_i , C_i as in the table below, we obtain the polynomial $D(x^n, y^n, z^n) = C_1^2 - A_1^n = C_2^2 - A_2^n = C_3^2 - A_3^n$.

$$egin{array}{c|c|c|c} i & A_i & 2C_i \ \hline 1 & yz & -x^n + y^n + z^n \ 2 & zx & x^n - y^n + z^n \ 3 & xy & x^n + y^n - z^n \ \hline \end{array}$$

This polynomial, which will play an important part in our proof, is also applied to the research on "n-rank" of the ideal class groups of quadratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above expressions of $D(x^n, y^n, z^n)$ cannot be used effectively (see [1] pp. 451). However, in the proof of our theorem, we take full advantage of them.

In case n=3 i.e. pure cubic case, corresponding to Craig's precise result [2] on 3-rank of the ideal class groups of quadratic fields, we can prove a 2-rank theorem giving a better estimation than above, which will appear elsewhere.

^{*)} Partially supported by the Fûjukai Foundation.