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1. Introduction. Let Xg be a closed orientable surface o genus g2
and let be its mapping class group. Let be the subgroup of ,
consisting ot all mapping classes which act on the homology ot X trivially.
It is called the Torelli group of genus g and we have a short exact sequence
1-+,--,-+Sp(2g, Z)-+ 1 where Sp(2g, Z) is the Siegel modular group.
Recently Johnson has obtained several undamental results concerning the
structure the Torelli group. Among other things he enumerated the
Birman-Craggs homomorphisms ,,Z/2, which are defined by using the
Rohlin invariant ot homology 3-spheres (see [1]), and investigated the rela-
tionship between them and another abelian quotient o q which he con-
structed by making use of the action ot cn a certain nilpotent quotient
of Zl(X) (see [3] [4]).

Now the purpose of the present note is to announce our recent related
results. Roughly speaking, we have first "litel" Johnson’s result men-
tioned above in terms of Casson’s invariant or homology 3-spheres ([2])
rather than the Rohlin invariant, and then put the computations erward
by one step. As a result we can prove the existence of a new method o
defining Casson’s invariant (see Theorem 9).

2. Johnson’s method. Here we briefly recall Johnson’s method of
investigating the mapping class groups (see [5] or details). For simplicity
here we only consider the mapping class group ,,1 ot 2, relative to an
embedded disc DcZ. Write F, for 7l(X)(X.0q---Xq\b2) and inductively
define F+I=[F,F,] (k=1,2, ...). We may call N--_F1/F the k-th nil-
potent quotient o F. We simply write H or N=H(X, Z) and choose a
symplectic basis x,, ..., x, y, ..., y of it. Let _Z’ be the free graded Lie
algebra on x, y and let be the submodule ot consisting of all homo-
geneous elements cf degree k. It is a classical result that there exists a
natural isomorphism F/F+, (see [7])and we have a central extension
0-+N+,N-+I. We have also natural isomorphisms A’./kH and
.-/kH(R)H//kH. Now =Z/,, naturally acts on N and set q(k) to
be the subgroup oi /consisting of all elements which act on N trivially.
(2) is nothing but the Tcrelli group ,, and according to [6], (3) is the
subgroup ot /generated by all Dehn twists on bounding simple closed
curves on X. Hereafter we write J<,l or /(3). Johnson constructed a
homomorphism r I(k)-+A:@H such that Ker r----,l(k/l) and proved


