109. Isotropic Submanifolds in a Euclidean Space

By Takehiro Itoh

Institute of Mathematics, Tsukuba University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1986)

The Gauss map of a submanifold M in a Euclidean *n*-space E^n is the map which is obtained by the parallel displacement of the tangent plane of M in E^n . It is well known that the image of an *m*-dimensional submanifold in E^n by the Gauss map lies in the Grassmann manifold G(m, n-m). The Gauss map is useful for the study of submanifolds in E^n .

In the present paper we will discuss isotropic submanifolds in E^n with conformal Gauss map and prove the following

Theorem. Let M be an m-dimensional Riemannian manifold isotropically immersed in E^n . If the Gauss map Γ is conformal and the image $\Gamma(M)$ is totally umbilical in G(m, n-m), then M is a minimal and isotropic submanifold in a hypersphere S^{n-1} of E^n with the parallel second fundamental form.

We well know that minimal isotropic submanifolds in a sphere with the parallel second fundamental form are classified in [5].

§1. Preliminaries. In the present paper we use the notations introduced in [3] and [4]. Let M be an m-dimensional Riemannian manifold immersed in E^n through the isometric immersion ι . In each neighborhood $V \subset M, M$ is given by differentiable functions

(1.1) $x^{A} = x^{A}(y^{1}, y^{2}, \cdots, y^{m}),$

where x^{A} (A=1, 2, ..., n) are rectangular coordinates of E^{n} and y^{i} (i=1, 2, ..., m) local coordinates of M in V. We define B_{i}^{A} by $B_{i}^{A}=\partial x^{A}/\partial y^{i}$. The tangent plane $\iota(M_{p}), p \in M$, of ιM may be considered as a point $\Gamma(p)$ of G(m, n-m) by the parallel displacement in E^{n} , and so we get naturally a mapping $\Gamma: M \to G(m, n-m)$ which is called the Gauss map associated with the immersion ι and $\Gamma(M)$ the Gauss image of M. In the present paper, we always assume that the Gauss map is regular.

Now, we assume that $V \subset M$ is a neighborhood of a fixed point $p \in M$ whose local coordinates satisfy $y^i = 0$, $i = 1, \dots, m$. Let (e_i, e_α) be a fixed orthonormal frame of E^n such that e_i are vectors of $\iota(M_p)$ and e_α are normal to $\iota(M_p)$. For each point $q \in V$, let (f_i, f_α) be an orthonormal frame of E^n where f_i are vectors of $\iota(M_q)$ and f_α are normal to $\iota(M_q)$ such that, in V, (f_i, f_α) is a differentiable frame satisfying $\langle f_i, e_j \rangle = \langle f_j, e_i \rangle$, $\langle f_\alpha, e_\beta \rangle = \langle f_\beta, e_\alpha \rangle$ and $f_i(0) = e_i$, $f_\alpha(0) = e_\beta$. Denoting f_i^A the components of the vector f_i , we may put $f_i^A = \sum_k \iota_i^k B_k^k$. The matrix (ι_j^i) satisfies $\sum \iota_i^l \iota_j^k g_{lk} = \delta_{ij}, g_{ij} = \sum B_i^A B_j^A$, where g_{ij} are the components of the first fundamental form g of M. Then we have $\sum \iota_i^l \iota_j^r = g^{ij}$ where $\sum g^{ik} g_{kj} = \delta_j^i$. The components of the second