109. Isotropic Submanifolds in a Euclidean Space

By Takehiro ITOH

Institute of Mathematics, Tsukuba University

(Communicated by Kôsaku YosiDA, M.J.A., Dec. 12, 1986)

The Gauss map of a submanifold M in a Euclidean n-space $Eⁿ$ is the map which is obtained by the parallel displacement of the tangent plane of M in $Eⁿ$. It is well known that the image of an m-dimensional submanifold in $Eⁿ$ by the Gauss map lies in the Grassmann manifold $G(m, n-m)$. The Gauss map is useful for the study of submanifolds in $Eⁿ$.

In the present paper we will discuss isotropic submanifolds in $Eⁿ$ with conformal Gauss map and prove the following

Theorem. Let M be an m-dimensional Riemannian manifold isotropically immersed in E^n . If the Gauss map Γ is conformal and the image $\Gamma(M)$ is totally umbilical in $G(m, n-m)$, then M is a minimal and isotropic submanifold in a hypersphere S^{n-1} of E^n with the parallel second fundamental form.

We well know that minimal isotropic submanifolds in a sphere with the parallel second fundamental form are classified in [5].

1. Preliminaries. In the present paper we use the notations introduced in $[3]$ and $[4]$. Let M be an m-dimensional Riemannian manifold immersed in $Eⁿ$ through the isometric immersion ι . In each neighborhood $V\subset M$, M is given by differentiable functions

(1.1) $x^4 = x^4(y^1, y^2, \cdots, y^m),$

where x^4 (A = 1, 2, ..., n) are rectangular coordinates of E^n and y^i (i=1, 2, \cdots , *m*) local coordinates of *M* in *V*. We define B_i^A by $B_i^A = \frac{\partial x^A}{\partial y^i}$. The tangent plane $\iota(M_p)$, $p \in M$, of ιM may be considered as a point $\Gamma(p)$ of $G(m, n-m)$ by the parallel displacement in $Eⁿ$, and so we get naturally a mapping $\Gamma: M \rightarrow G(m, n-m)$ which is called the Gauss map associated with the immersion ι and $\Gamma(M)$ the Gauss image of M. In the present paper, we always assume that the Gauss map is regular.

Now, we assume that $V\subset M$ is a neighborhood of a fixed point $p\in M$ whose local coordinates satisfy $y^i=0$, $i=1, \dots, m$. Let (e_i, e_{α}) be a fixed orthonormal frame of E^n such that e_i are vectors of $\iota(M_p)$ and e_a are normal to $\iota(M_v)$. For each point $q \in V$, let (f_i, f_q) be an orthonormal frame of E^n where f_i are vectors of $\ell(M_q)$ and f_a are normal to $\ell(M_q)$ such that, in V, (f_i, f_a) is a differentiable frame satisfying $\langle f_i, e_j \rangle = \langle f_j, e_i \rangle, \langle f_a, e_j \rangle = \langle f_j, e_a \rangle$ and $f_i(0) = e_i$, $f_a(0) = e_i$. Denoting f_i^A the components of the vector f_i , we may put $f_i^A = \sum_k \gamma_i^k B_k^A$. The matrix (γ_j^i) satisfies $\sum_j \gamma_i^i \gamma_j^k g_{ik} = \delta_{ij}$, $g_{ij} = \sum_j B_i^A B_j^A$, where g_{ij} are the components of the first fundamental form g of M. Then where g_{ij} are the components of the first fundamental form g of M. Then
we have $\sum \tilde{r}_i^i \tilde{r}_i^j = g^{ij}$ where $\sum g^{ik} g_{kj} = \delta_j^i$. The components of the second