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Introduction. We define MHM(X, k) the categories of (geometric)
mixred Hodge Modules in the algebraic case, and prove the stability by
subquotients, vanishing cycle functors, direct images, pull-backs (and
external products). In this note, X, Y are smooth algebraic varieties
(assumed always separated) over C, and 9, is the sheaf of algebraic dif-
ferential operators; all the 9,-Modules are assumed quasi-coherent, and
the holonomic Modules regular.

§1. Definitions and main results.

1.1. Let k be a subfield of R. Let MF,(9,, k) be the category of
filtered holonomic 9Dy-Modules (M, F') with k-structure given by DR(M)=~=
CQ®K for K € Perv (ky), MH ,(X, k, n)” the category of (algebraic) polarizable
Hodge Modules of weight n with striet support Z, and MH(X, k,n)?
=@ MH (X, k,n)* (cf. [4,5]). MHW(X, k)* is the category of the objects
of MF,(9y, k) with a finite filtration W such that GrY e MH(X, k, 7)* for
any 1.

1.2. Let g be a function on X. Thgn by definition

\b'v(M’ F,K) =(®-1$a<~0 (GriM, F[]-])’ ‘P'qK[_ 1]),

¢q,l(M, F7 K)z((Gr(E,M’ F)1 ZS(IJK[—]'])’
for (M, F,K, W)e MHW(X, k)?, where (M, F)=1,(M, F) with 7, the immer-
sion by graph, and V is the filtration of Malgrange-Kashiwara (cf. [loc.
cit]). Let L be the filtration defined by L, =+, W,,, and L.¢,,=¢, ,W..
We say that the vanishing cycle functors +, and ¢,, are well-defined for
M,F,K,W)e MHW (X, k)*, if the following conditions are satisfied (com-
pare to [6]):
(1.2.1) (F, W, V) are compatible filtrations (cf. [5]) of M,
(1.2.2) the monodromy filtration W of -, and ¢, , relative to L exists (cf.

[3D),

1.2.3) can (W, )CW.é,, and Var (W,é, )T W, s, ,(—1),
(1.2.4) (F, W, L) are compatible filtrations of v, and ¢, ,,
1.2.5) (y,M,F,K), W), (¢,.(M,F,K), Wye MHW(X, k)*.
(As is pointed out by Kashiwara, (1.2.3-5) follows from the other condi-
tions.)

1.3. Let¢: U—X be an open immersion such that X\U is a divisor.
Let E=WM,F,K, W)ye MHW(U, k)*. Then E'=M',F,K’, W)ye MHW (X, k)?
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