103. Mixed Hodge Modules

By Morihiko SAITO*)

Institute for Advanced Study, Princeton Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1986)

Introduction. We define $MHM(X, k)^{(v)}$ the categories of (geometric) mixed Hodge Modules in the algebraic case, and prove the stability by subquotients, vanishing cycle functors, direct images, pull-backs (and external products). In this note, X, Y are smooth algebraic varieties (assumed always separated) over C, and \mathcal{D}_x is the sheaf of algebraic differential operators; all the \mathcal{D}_x -Modules are assumed quasi-coherent, and the holonomic Modules regular.

§1. Definitions and main results.

1.1. Let k be a subfield of R. Let $MF_h(\mathcal{D}_X, k)$ be the category of filtered holonomic \mathcal{D}_X -Modules (M, F) with k-structure given by $DR(M) \simeq C \otimes K$ for $K \in \text{Perv}(k_X)$, $MH_Z(X, k, n)^p$ the category of (algebraic) polarizable Hodge Modules of weight n with strict support Z, and $MH(X, k, n)^p$:= $\oplus MH_Z(X, k, n)^p$ (cf. [4, 5]). $MHW(X, k)^p$ is the category of the objects of $MF_h(\mathcal{D}_X, k)$ with a finite filtration W such that $\operatorname{Gr}_i^w \in MH(X, k, i)^p$ for any *i*.

1.2. Let g be a function on X. Then by definition

 $\psi_{q}(M, F, K) = (\bigoplus_{-1 \le a < 0} (Gr_{a}^{v} \tilde{M}, F[1]), \psi_{q} K[-1]),$

 $\phi_{g,1}(M, F, K) = ((\operatorname{Gr}_0^V \tilde{M}, F), \phi_{g,1}K[-1]),$

for $(M, F, K, W) \in MHW(X, k)^p$, where $(\tilde{M}, F) = i_{g^*}(M, F)$ with i_g the immersion by graph, and V is the filtration of Malgrange-Kashiwara (cf. [loc. cit]). Let L be the filtration defined by $L_i \psi_g = \psi_g W_{i+1}$ and $L_i \phi_{g,1} = \phi_{g,1} W_i$. We say that the vanishing cycle functors ψ_g and $\phi_{g,1}$ are well-defined for $(M, F, K, W) \in MHW(X, k)^p$, if the following conditions are satisfied (compare to [6]):

- (1.2.1) (F, W, V) are compatible filtrations (cf. [5]) of \tilde{M} ,
- (1.2.2) the monodromy filtration W of ψ_g and $\phi_{g,1}$ relative to L exists (cf. [3]),
- (1.2.3) can $(W_i\psi_{g,1}) \subset W_i\phi_{g,1}$ and Var $(W_i\phi_{g,1}) \subset W_{i-2}\psi_{g,1}(-1)$,
- (1.2.4) (F, W, L) are compatible filtrations of ψ_g and $\phi_{g,1}$,
- (1.2.5) $(\psi_q(M, F, K), W), (\phi_{q,1}(M, F, K), W) \in MHW(X, k)^p.$

(As is pointed out by Kashiwara, (1.2.3-5) follows from the other conditions.)

1.3. Let $i: U \to X$ be an open immersion such that $X \setminus U$ is a divisor. Let $E = (M, F, K, W) \in MHW(U, k)^p$. Then $E' = (M', F, K', W) \in MHW(X, k)^p$

^{*)} Supported by the Sloan Foundation.