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1. Introduction. In this note we study automorphisms of algebraic
K3 surfaces over C which act trivially on Picard groups. Recall thata K3
surface X is a nonsingular compact complex surface with trivial canonical
bundle and dim H*(X, O4)=0. The second cohomology group H¥X, Z) ad-
mits a canonical structure of a lattice of rank 22 induced from the cup
product. We denote by Sy the Picard group of X. Then Sy has a structure
of a sublattice of H*(X, Z). Let Ty be the orthogonal complement of Sy in
H*X, Z)which is called a transcendental lattice of X. Put H,=Ker(Aut(X)
—Aut(Sy)). Then H, is a cyclic group Z/m of order m, and ¢(m) is a divisor
of the rank of T'; where ¢ is the Euler function ([8], Corollary 3.3).

Theorem. Let X be an algebraic K3 surface and my the order of H,.
Assume that the lattice Ty is unimodular (i.e. det(Ty)==+1). Then

(1) my is a divisor of 66, 44 or 12,

(2) Suppose that g(m)=rank(Ty). Then my is equal to either 66 or
42. Moreover for m=66 or 42, there exists a unique (up to isomorphisms)
algebraic K3 surface with my=m.

In case T, is non unimodular, Vorontsov [8] proved a similar result
as the above theorem. However his statement for unimodular case is not
complete and contains a mistake, i.e. he claims that there exists an alge-
braic K3 surface with m,=12 and rank(7y)=¢(12) (his proof has not yet
published). His method is based on the theory of a cyclotomic field @(m).
Here we use only the theory of elliptic surfaces due to Kodaira [1].

2. Example. In this section we construct two examples of algebraic
K3 surfaces with m =66, 42.

(2.1) Example 1. Let (2, v, 2) be a system of a homogeneous coordi-
nate of P2. We take two copies W,=P?Xx C,and W,=P?XC, of the cartesian
product P?X C and form their union W=W,U W, by identifying (x, v, 2, ©)
e W, with (z,, y,, 2, u) € W, if and only if w-u,=1, x=2x,, y=ui-y and z=
u2-2,. We define a subvariety X of W by the following equations :
zs—y{yz ﬁ1 (u—&)—xz}=0,
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z?—yl{y% M (1——u1~$i)-x§}=0

i=1

@2.2)

where &, (i=1, 2, --.,12) are distinct comlex numbers. Let = be a pro-
jection from X to the u-sphere P'. It iseasy to see that X is non singular



