99. A Note on a Global Version of the Coleman Embedding

By Humio ICHIMURA

Department of Mathematics, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1986)

- § 1. Introduction. Let l be an odd prime number and $(\zeta_{\nu})_{\nu\geq 1}$ be a fixed system of primitive l^{ν} -th root of unity with $\zeta_{\nu+1}^{l}=\zeta_{\nu}$. Let Ω_{l}^{-} be the "minus part" of the maximum pro-l abelian extension Ω_{l} over the cyclotomic field $\mathbf{Q}(\mu_{l})$ unramified outside l, and set $\mathfrak{G} = \operatorname{Gal}(\Omega_{l}^{-}/\mathbf{Q}(\mu_{l}))$. Let \mathfrak{U} be the inertia group of an extension of l in $\Omega_{l}^{-}/\mathbf{Q}(\mu_{l})$, and let \mathfrak{U}' be the projective limit of the principal unit group of $\mathbf{Q}_{l}(\zeta_{\nu})$ w.r.t. the relative norm.
- R. Coleman [1] constructed an embedding (w.r.t. the system $(\zeta_{\nu})_{\nu}$) [Col]': $\mathfrak{U}' \rightarrow Z_{l}[[T]]^{\times}$, which is a basic tool in the theory of cyclotomic fields. By class field theory, [Col]' induces, naturally, an embedding [Col]: $\mathfrak{U} \rightarrow Z_{l}[[T]]^{\times}$. Under the conjecture (\mathfrak{C}) that $L_{l}(m, \omega^{1-m}) \neq 0$ for any odd integer $m \geq 3$, we can extend [Col] to a homomorphism $\mathfrak{G} \rightarrow Q_{l}[[T]]^{\times}$ as follows (where ω denotes the Teichmüller character and $L_{l}(s, \omega^{1-m})$ denotes the l-adic L-function): Note that for $\rho \in \mathfrak{U}$,

[Col](
$$\rho$$
) = exp $\left(\sum_{\substack{m\geq 3\\\text{odd}}} \frac{\varphi_m(\rho)}{m!} X^m\right)$

where φ_m is the Coates-Wiles homomorphism and $X = \log (1+T)$. Let χ_m be the Kummer character w.r.t. the system of the l-units

$$\varepsilon_{\nu}(m) = \prod_{\substack{1 \leq a \leq l^{\nu} \\ (a,l)=1}} (\zeta_{\nu}^{a} - 1)^{a^{m-1}},$$

i.e. χ_m is a homomorphism $\mathfrak{G} \rightarrow \mathbb{Z}_t$ such that

$$(\varepsilon_{\nu}(m)^{1/l\nu})^{\rho-1} = \zeta_{\nu}^{\chi_m(\rho)}$$

for any $\nu \ge 1$ and $\rho \in \mathfrak{G}$. This Kummer character is considered in Soulé [8], Deligne [3] and Ihara [5]. See, also, Ichimura-Sakaguchi [4]. By Coleman, $\chi_m \mid \mathfrak{U} = (1 - l^{m-1}) L_l(m, \omega^{1-m}) \varphi_m$. Therefore, under the conjecture (\mathfrak{G}), the homomorphism

$$\psi: \mathfrak{G}\ni \rho \mapsto f_{\rho}(T) = \exp\left(\sum_{\substack{m\geq 3 \\ \text{odd}}} \frac{(1-l^{m-1})^{-1}L_{l}(m, \omega^{1-m})^{-1}\chi_{m}(\rho)}{m!} X^{m}\right) \in \mathbf{Q}_{l}[[T^{\times}]]$$

is a global version of [Col], i.e. $\psi \mid \mathfrak{U} = [Col]$.

The purpose of this note is to study some properties of ψ . Clearly, $\psi^{-1}(Z_{l}[[T]]^{\times})\supset \mathfrak{U}$ Ker ψ . But since there appear $L_{l}(m, \omega^{1-m})^{-1}$ in the coefficient of T^{m} of $f_{\rho}(T)$, there may be some $\rho \in \mathfrak{G}$ such that $f_{\rho}(T) \notin Z_{l}[[T]]^{\times}$. The main aim of this note is to show the following

Theorem (Under the conjecture (\mathfrak{C})). $\psi^{-1}(Z_{l}[[T]]^{\times}) = \mathfrak{U} \operatorname{Ker} \psi$.

Further, we prove a proposition on the kernel of ψ .

Acknowledgement. The author is very grateful to Prof. Y. Ihara for suggesting him that [Col] can be extended to ψ as stated above and