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1. Introduction. Let U be the unit disc {{2|<1}in C. A function f
holomorphic in U is said to belong to the class M if

f “log* Mf(0) Y < oo,
0 2r

where M f(6) =8UD,<, | f(re*)| and log* x=max (log x,0), ©>0. The class
M was introduced and studied in [3]. It is shown that

UH'SMSN®,

>0
where H? is the usual Hardy class of order >0 and N* the Smirnov class.
See [1] or [2] for the general theory of H? and N*.
The space M with the metric given by

as, 9)=|"10g +M(f—g)(0»§vz

is an F-algebra, i.e., a topological vector space with a complete translation
invariant metric in which multiplication is continuous. The class M has
many similarities with the Smirnov class N* as an F-algebra. See [3] and
[4]. For example, the following are noted in [3].

@) For 2¢e U, if we define

(N =r, feM,

then 7, is a continuous multiplicative linear functional on M. Conversely,
if 7 is a nontrivial multiplicative linear functional on M then 7 =7, for some
ieU.

2) If 2¢U and m,={fe M: f(A)=0} then m,=(z—2)M and m, is a
closed maximal ideal of M.

(3) There exists a maximal ideal m of M which is not the kernel of
a multiplicative linear functional on M.

In this note, we show that every closed maximal ideal is the kernel of
a multiplicative linear functional on M (see Corollary 5). The correspond-
ing theorem for N* was proved [4].

2. Main theorem.

Lemma 1. Let m be a nonzero ideal of M. Then m contains a bounded
holomorphic function which is not identically zero.

Proof. Let fem and f#0. Since MCN"*, f can be factored canoni-
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