95. Uniqueness of the ω -limit Point of Solutions of a Semilinear Heat Equation on the Circle

By Xuyan CHEN

Department of Mathematics, Hiroshima University (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1986)

§ 1. Introduction. In this paper we discuss the asymptotic behavior of a semilinear heat equation on the circle. Namely we shall show that the ω -limit set of any solution contains at most one element. This implies that any bounded global solution converges to an equilibrium solution as $t \rightarrow \infty$.

To be more precise, consider the initial value problem

(1.1)
$$\begin{cases} u_t = u_{xx} + f(u), & x \in \mathbf{R}, \ t > 0, \\ u(x, 0) = u_0(x), & x \in \mathbf{R}, \\ u_0(x+1) = u_0(x), & x \in \mathbf{R}, \end{cases}$$

where f is a C¹-function on **R** and u_0 is a continuous function of period 1. It is well known that (1, 1) has a unique classical solution u(x, t) such that $u(\cdot, t) \in L^{\infty}(\mathbf{R})$ for every $t \in [0, s(u))$, where [0, s(u)) denotes the maximal interval of existence for the solution u. Also one can easily show that u(x+1, t) = u(x, t) for $x \in \mathbf{R}$, t > 0. Therefore (1.1) can be regarded as an equation on a circle.

For a solution u of (1.1), its ω -limit set is defined by (1.2) $\omega(u) = \bigcap_{0 < l < s(u)} \text{closure } \{u(\cdot, \tau) : \tau > t\},$

where the "closure" is with respect to the topology of $C^{2}(\mathbf{R})$.

A standard a priori estimate and dynamical systems argument show that $\omega(u) \neq \emptyset$ if and only if $s(u) = \infty$ and there exists a sequence $t_n \to \infty$ such that $u(\cdot, t_n)$ remains bounded as $n \to \infty$, in which case $\omega(u)$ is a connected locally compact subset of $C^2(\mathbf{R})$. Using the Lyapunov functional, one can show that each $\phi \in \omega(u)$ is an equilibrium of (1.1), that is, ϕ satisfies

(1.3)
$$\begin{cases} \phi'' + f(\phi) = 0, & x \in \mathbf{R}, \\ \phi(x+1) = \phi(x), & x \in \mathbf{R}. \end{cases}$$

For the details, see, for instance, [1] and [4].

For each $\lambda \in \mathbf{R}$, we let $\phi(x; \lambda)$ be the solution of the following initial value problem for ordinary differential equation:

(1.4)
$$\begin{cases} \phi'' + f(\phi) = 0, & x \in \mathbf{R}, \\ \phi(0; \lambda) = \lambda, \\ \phi'(0; \lambda) = 0, \end{cases}$$

where ' stands for d/dx. Define

 $\Lambda(f) = \{ \lambda \in \mathbf{R} : \phi(x; \lambda) \text{ is nonconstant and 1-periodic in } x \}.$

Our main result is the following :

Theorem. If $\Lambda(f)$ contains no interior point, then $\omega(u)$ contains at