94. Representations of a Solvable Lie Group on δ_b Cohomology Spaces

By Takaaki NOMURA
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1986)

Let (g, j, ω) be a normal j-algebra introduced by Pyatetskii-Shapiro [5] (see below). We denote by G the connected and simply connected Lie group with Lie algebra g. The aim of this note is to give, relating its construction to a certain geometric structure, a unitary representation of G in which every irreducible (up to a set of Plancherel measure zero) occurs with multiplicity one.

1. A triplet (\mathfrak{g},j,ω) of a completely solvable Lie algebra \mathfrak{g} , a linear operator j on \mathfrak{g} such that $j^2=-1_{\mathfrak{g}}$ and $\omega\in\mathfrak{g}^*$ is termed a $normal\ j$ -algebra if (i) the Nijenhuis tensor for j vanishes, (ii) $\langle x,y\rangle:=\omega([x,jy])$ defines an inner product on \mathfrak{g} relative to which j is an orthogonal transformation. Let $G=\exp\mathfrak{g}$, the connected and simply connected Lie group corresponding to \mathfrak{g} . As is well-known, there is a Siegel domain D of type II on which G acts simply transitively by affine automorphisms. Denote by S(D) the Šilov boundary of D. Then, S(D) is diffeomorphic to a nilpotent (at most 2-step) normal subgroup N(D) of G. Moreover, G is written as a semi-direct product $G=N(D)\rtimes G(0)$ with a closed subgroup G(0) of G. We assume throughout this note that D does not reduce to a tube domain. In this case, N(D) is a 2-step nilpotent Lie group and S(D) has a natural CR structure. So, the tangential Cauchy-Riemann operator $\bar{\partial}_b$ is defined and we have $\bar{\partial}_b \circ \bar{\partial}_b = 0$.

By Rossi-Vergne [7], the unitary representations of N(D) defined by translations on the square integrable $\bar{\partial}_b$ cohomology spaces H^q $(q=0,1,\cdots)$ on S(D) contain almost every irreducible of N(D). We will define unitary representations of G on H^q $(q=0,1,\cdots)$ such that their restrictions to N(D) coincide with those of [7]. We remark that there is no G-invariant Riemannian metric on S(D), so the usual geometric method is not directly applicable.

2. It is known that g is written as an orthogonal direct sum (relative to $\langle \cdot, \cdot \rangle$) $g = g(0) \oplus g(1/2) \oplus g(1)$ with $[g(k), g(m)] \subset g(k+m)$, where we understand $g(k) = \{0\}$ for k > 1. Then, g(0) = Lie G(0) and we have $\pi(D) := \text{Lie } N(D) = g(1/2) + g(1)$. We put V = g(1/2). Then V is j-invariant, so dim V > 0 is even. We denote by \mathcal{E} the set of all $\lambda \in g(1)^*$ such that the skew-symmetric bilinear form $\lambda([x, y])$ on V is non-degenerate. \mathcal{E} is an open dense subset of $g(1)^*$. Let J be a Borel mapping with values in real linear operators on V such that for each $\lambda \in \mathcal{E}$, (i) $J(\lambda)$ is a complex structure on V satisfying