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1. Introduction. We consider the system of conservation equations
( 1 ) f(u.)27f(u)= (G(u)Ux)x, t>_O, x e R,
where u=u(t, x) is an m-vector, f(u) and f(u) are smooth m-vector valued
unctions, and G(u) is a smooth mm matrix. We assume that Df(u),
the Jacobian of f(u), is non-singular and the mapping v=f(u) is one-to-
one so that (1) is equivalent to
( 2 ) V +f(u(v))-- (B(u(v))V)x, v---- f(u).
Here u-u(v)is the inverse mapping of v--f(u) and B(u)--G(u)Df(u) -’.
We study the large-time behavior o solution of (1). It is shown that as
t-+c, the solution of (1) approaches the superposition of the nonlinear
and linear diffusion waves constructed by solutions of the Burgers equa-
tion and the linear heat equation. The same problem was discussed in
[5] or a model system of a viscous gas.

2. Global existence and decay of solutions. As the first step, we
consider the global existence problem or (1). This problem has been
solved in [2] under the conditions (i)-(iii) described below.

) The system (1) has a strictly convex entropy ([1], [2]).
This condition enables us to reduce the system (1) to the symmetric form
( 3 ) A(u)u-A(u)u--B(u)u- g(u, u).
Here A(u), A(u)and B(u) are mm symmetric matrices such that A(u)
is positive definite and B(u) is nonnegative definite. For the explicit form
of (3), see [1], [2].

(ii) The associated symmetric system (3) is hyperbolic-parabolic ([2]).
(iii) The linearized system of (3) around a given constant state u----

satisfies the stability condition ([6])" Let 2A()=A() and B()=0 for

2eRandCeR. Then=0.
The results concerning the global existence and decay of solution of

(1) are summarized in the following theorem.
Theorem 1 ([2]). Let be a constant state and assume (i)-(iii). Con-

sider (1) with the initial data u(O, x)=Uo(X). If Uo(X)- is small in
s>_2, then (1) has a unique global solution u(t, x) which converges to uni-
formly in x e R as t--oo. If, in addition, Uo(X)-- is small in H L, s >_3,
then the L2-norm of 3x(f(u(t,x))-f()) tends to zero at the rate t
as t-oo, where 31<_s--2.

The first part of the theorem is proved by an energy method which


