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0. Introduction. In [2], Y. Ihara studied the "pro-/braid group" of
degree 2 which is a certain big subgroup #Out of the outer auto-
morphism group of the free pro-/group of rank 2. There is a canonical
representation 9: G-*# of the absolute Galois group G=Gal (/Q) which
is unramified outside l, and for each prime p=/=l, the Frobenius of p deter-
mines a conjugacy class C of which is contained in the subset
formed of all elements of "norm" p (loc. cit. Ch. I). In this note, we shall
prove that P contains infinitely many #-conjugacy classes, at least if p
generates Z topologically. It is an open question whether one can dis-
tinguish the Frobenius conjugacy class from other norm-p-conjugacy
classes.

1. The result. Let be a rational prime. We denote by Zl, Z and
Q, respectively, the ring of /-adic integers, the group of /-adic units and
the field of/-adic numbers. As in [2], let =(2) be the free pro-/ group
of rank 2 generated by x, y, z, xyz= 1, =Brd(2) (; x, y, z) be the pro-/
braid group of degree 2, Nr (a) e Z be the norm of a e , and for a..e Z,

be the "norm-a-part", i.e., ={ e lNr
Theorem. If e Z generates Z, then the set contains infinitely

many #-conjugacy classes.
Remarks. 1) In [2], it is proved under the same assumption, that

contains at least two #-cnjugacy classes. (Corollary of Proposition 8,
Ch. I.)

2) In [1], M. Asada and the author studied the "pro-/ mapping class
group" and obtained a result similar to 1).

2. Proof. Our method of proof is to consider the projection of to
the group gZ=Brd( (/"; x, y, z), where "=[’, ’], ’=[, ] and we
use the same symbols x, y, z for their classes mode". By Theorem 3 in
[2] Ch. II, the group g is explicitly realized as follows. Define the group
0 by

6 {(c, F)]c e Z, F e, F+uvwA =06}
with the composition law (c, F)(fl, G)=(afl, F. G]0, where

j=Zl[[u, v, w]]/((l+u)(1 +v)(1 +w)--l)Zl[[u, v]],
*) This is a part of the master’s thesis of the author at the University of Tokyo
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